Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: Giải
a,16^x=4
=>2^4x=2^2
=>4x=2=>x=2
b,25^x=125
=>5^2x=5^3
=>2x=3=>x=3/2
c,*Ta có:2^2.3^2=36
Bài 3: Giải
a,Tự làm
b,*Ta có:x^5=32
=>x^5=2^5 Mà 5>0
=>x=2
c,*Ta có:x^3=216
=>x^3=6^3 Mà 3>0
=>x=3
d,*Ta có:x^2=1-8/9
=>x^2=1/9
=>x^2=(1/3)^2
=>x=1/3 hoặc x=-1/3
e,*Ta có:x^3=1-7/8
=>x^3=1/8
=>x=1/2(vì 3 là số lẻ)
\(\text{Bài 4:}\)
\(a.\left|x-\frac{3}{5}\right|< \frac{1}{3}\Rightarrow\orbr{\begin{cases}x-\frac{3}{5}< \frac{1}{3}\\x-\frac{3}{5}>-\frac{1}{3}\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x< \frac{14}{15}\\x>\frac{4}{15}\end{cases}\Rightarrow\frac{4}{15}< x< \frac{14}{15}}\)
\(b.\left|-5,5\right|=5,5\)
\(\Rightarrow\left|x+\frac{11}{2}\right|>5,5\Rightarrow\orbr{\begin{cases}x+\frac{11}{2}>5,5\\x+\frac{11}{2}< -5,5\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x>0\\x< -11\end{cases}}\)
Bài 1:
\(f\left(-1\right)=1\)
\(f\left(\dfrac{1}{2}\right)=-\dfrac{1}{2}\)
\(f\left(0\right)=-1\)
\(f\left(-5\right)=49\)
Bài 2:
Bạn lấy toạ độ điểm A(1;3); B(-1;-3), C(0;0). Đồ thị y=3x một đường thẳng đi qua gốc toạ độ O nhé!
K MIK NHA BẠN ^^
Tính B= 1 + 2 + 3 + ... + 98 + 99
Tính C = 1 + 3 + 5 + ... + 997 + 999
Tính D = 10 + 12 + 14 + ... + 994 + 996 + 998
4A=1.2.3 + 2.3.3 + 3.4.3 +... + n.(n+1).3
=1.2.(3-0) + 2.3.(4-1) + ... + n.(n+1).[(n+2)-(n-1)]
=[1.2.3+ 2.3.4 + ...+ (n-1).n.(n+1)+ n.(n+1)(n+2)] - [0.1.2+ 1.2.3 +...+(n-1).n.(n+1)]
=n.(n+1).(n+2)
=>S=[n.(n+1).(n+2)] /3
Bài 1: C = (999+1). [(999-1):2+1]: 2= 250000
Bài 2: B = (99+1). [(99-1):2+1]: 2= 2500
Bài 3: D = (998+10). [(998-10):2+1]: 2= 249480
Bài 4: 3S= 1.2.3 + 2.3.3 + 3.4.3+...+n.(n+1).3
= 1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+.....+n.(n+1).[(n+2)-(n-1)]
= 1.2.3+2.3.4+2.3+3.4.5-2.3.4+.....+n.(n+1).(n+2)-n.(n+1)-(n-1)
=n.(n+1).(n+2)
=> A = \(\frac{n.\left(n+1\right).\left(n+2\right)}{3}\)
Bài 1:
a) \(x^2-xy+x-y=\left(x^2-xy\right)+\left(x-y\right)=x\left(x-y\right)+\left(x-y\right)=\left(x^2+1\right)\left(x-y\right)\)
b) \(xz+yz-5\left(x+y\right)=\left(xz+yz\right)-5\left(x+y\right)=z\left(x+y\right)-5\left(x+y\right)=\left(x+y\right)\left(z-5\right)\)
c) \(3x^2-3xy-5x+5y=\left(3x^2-3xy\right)-\left(5x-5y\right)=3x\left(x-y\right)-5\left(x-y\right)=\left(x-y\right)\left(3x-5\right)\)
Bài 1:
a: \(x^2-xy+x-y\)
\(=x\left(x-y\right)+\left(x-y\right)\)
\(=\left(x-y\right)\left(x+1\right)\)
b: \(xz+yz-5\left(x+y\right)\)
\(=z\left(x+y\right)-5\left(x+y\right)\)
\(=\left(x+y\right)\left(z-5\right)\)
c: \(3x^2-3xy-5x+5y\)
\(=3x\left(x-y\right)-5\left(x-y\right)\)
\(=\left(x-y\right)\left(3x-5\right)\)
Bài 1
b) \(3^x.5=405\)
\(3^x=405:5\)
\(3^x=81\)
\(3^x=3^4\)
\(x=4\)
c) \(9.2^x-5.2^x=32\)
\(2^x.\left(9-5\right)=32\)
\(2^x.4=32\)
\(2^x=32:4\)
\(2^x=8\)
\(2^x=2^3\)
\(x=3\)
h) \(5^{x+2}+5^{x+1}=750\)
\(5^{x+1}.\left(5+1\right)=750\)
\(5^{x+1}.6=750\)
\(5^{x+1}=750:6\)
\(5^{x+1}=125\)
\(5^{x+1}=5^3\)
\(x+1=3\)
\(x=3-1\)
\(x=2\)
`2,`
c)
`(x - \frac{1}{2})^3 = -8`
`\Rightarrow (x - \frac{1}{2})^3 = (-2)^3`
`\Rightarrow x - \frac{1}{2} = -2`
`\Rightarrow x = -2 + \frac{1}{2}`
`\Rightarrow x = -\frac{3}{2}`
Vậy, `x = \frac{-3}{2}`
d)
`(5x - 3)^4 = 256`
`\Rightarrow (5x - 3)^4 = (+-4)^4`
`\Rightarrow`\(\left[{}\begin{matrix}5x-3=4\\5x-3=-4\end{matrix}\right.\)
`\Rightarrow`\(\left[{}\begin{matrix}5x=7\\5x=-1\end{matrix}\right.\)
`\Rightarrow`\(\left[{}\begin{matrix}x=\dfrac{7}{5}\\x=-\dfrac{1}{5}\end{matrix}\right.\)
Vậy, `x \in`\(\left\{-\dfrac{1}{5};\dfrac{7}{5}\right\}\)
f)
\(\dfrac{\left(x-2\right)^2}{7}=\dfrac{49}{x-2}\)
`\Rightarrow (x-2)^2 * (x - 2) = 7*49`
`\Rightarrow (x - 2)^3 = 7*7^2`
`\Rightarrow (x - 2)^3 = 7^3`
`\Rightarrow x - 2 = 7`
`\Rightarrow x = 7 + 2`
`\Rightarrow x = 9`
Vậy, `x = 9`
g)
`(x - \frac{1}{2})^3 = \frac{1}{27}`
`\Rightarrow (x - \frac{1}{2})^3 = (\frac{1}{3})^3`
`\Rightarrow x - \frac{1}{2} = \frac{1}{3}`
`\Rightarrow x = \frac{1}{3} + \frac{1}{2}`
`\Rightarrow x = \frac{5}{6}`
Vậy, `x = \frac{5}{6}.`