K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2017

TA CÓ \(\frac{a}{b}=\frac{c}{d}=\frac{p}{q}=\frac{am}{bm}=\frac{nc}{nd}=\frac{ep}{eq}\)

ÁP DỤNG TÍNH CHẤT DÃY TỈ SỐ BẰNG NHAU TA CÓ 

\(\frac{a}{b}=\frac{c}{d}=\frac{p}{q}=\frac{ma}{mb}=\frac{nc}{nd}=\frac{ep}{eq}=\frac{ma+nc+ep}{mb+nd+eq}\)(ĐPCM)

24 tháng 10 2017

ADTC dãy tỉ số bằng nhau ta có \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

\(\Rightarrow\hept{\begin{cases}a=b\cdot1=b\\b=c\cdot1=c\\c=a\cdot1=a\end{cases}\Leftrightarrow a=b=c}\)

27 tháng 6 2019

a) Vì \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

\(\Rightarrow\frac{ma}{mc}=\frac{nb}{nd}\)

áp dụng tc của dãy tỉ số bằng nhau ta có:

\(\frac{ma}{mc}=\frac{nb}{nd}=\frac{ma+nb}{mc+nd}=\frac{ma-nb}{mc-nd}\)

                     \(\Rightarrow\frac{ma+nc}{ma-nb}=\frac{mc+nd}{mc-nd}\left(đpcm\right)\)

27 tháng 6 2019

sai đề mb=nb  TL:

a)đặt \(\frac{a}{b}=\frac{c}{d}=k\left(k\ne0\right)\) 

=>a=kb ;c=kd

=>\(\frac{ma+nb}{ma-nb}=\frac{m.k.b+n.b}{m.k.b-n.b}=\frac{b\left(m.k+n\right)}{b\left(m.k-n\right)}=\frac{m.k+n}{m.k-n}\) 

Mặt khác: 

\(\frac{mc+nd}{mc-nd}=\frac{m.k.d+n.d}{m.k.d-n.d}=\frac{d\left(m.k+n\right)}{d\left(m.k-n\right)}=\frac{m.k+n}{m.k-n}\) 

=>\(\frac{ma+nb}{ma-nb}=\frac{mc+nd}{mc-nd}\) (đpcm)

hc tốt

9 tháng 8 2016

\(a.\)\(\frac{a}{b}=\frac{c}{d}\)=>   \(ad=bc\)=>   \(ad+ab=bc+ab\)=> a x ( b + d) = b x ( a + c )

=>  \(\frac{a}{b}=\frac{a+c}{b+d}\left(đpcm\right)\)

\(b.\)\(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)=>  \(\frac{a+b}{c+a}=\frac{a-b}{c-a}\)( Áp dụng tính chất dãy tỉ số bằng nhau )

=>\(\frac{a}{b}=\frac{c}{a}\)=>  \(a^2=bc\)( đpcm)

2 tháng 6 2016

Cách 1:Đặt \(\frac{a}{b}=\frac{c}{d}=k;\Rightarrow a=bk,c=dk\Leftrightarrow\)

\(\frac{a}{b}=\frac{bk}{b}=k\left(1\right)\)

\(\frac{c}{d}=\frac{dk}{d}=k\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{a}{b}=\frac{c}{d}\)

2 tháng 6 2016

Cách 2:Đặt: a/b = c/d = k => a = bk, c = dk 

Ta có: 

a + b/a - b = bk + b/bk - b = b(k+1)/ b(k-1) = k+1/k-1 (1) 

c + d/c- d = dk +d/ dk - d = d(k+1)/d(k-1) = k+1/k-1 (2) 

Từ (1) và (2) => a+b/a-b = c+d/c-d 

5 tháng 9 2016

Ta có:\(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\Rightarrow ad.ab< bc.ab\Rightarrow a\left(b+d\right)< b\left(a+c\right)\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\)(1)

và \(ad< bc\Rightarrow ad.cd< bc.cd\Rightarrow d\left(a+c\right)< c\left(b+d\right)\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\)(2)

Từ (1) và (2) ta có: \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

5 tháng 9 2016

@LêMinhAnh Cảm ơn bạn <3

14 tháng 10 2016

Ta có :\(\frac{a}{b}\)=\(\frac{c}{d}\)\(\Rightarrow\)\(\frac{a}{c}\)=\(\frac{b}{d}\)(1)\(\Rightarrow\)(\(\frac{a^{ }}{c}\))^4=(\(\frac{b}{d}\))^4\(\Rightarrow\)\(\frac{a^4}{c^4}\)=\(\frac{b^4}{d^4}\)

Áp dụng tính chất dãy tỉ số bằng nhau ,ta có;

\(\frac{a^4}{c^4}\)=\(\frac{b^4}{d^4}\)=\(\frac{a^4+b^4}{c^4+d^4}\)(2)

Áp dụng tính chất dãy tỉ số bằng nhau với (1) , ta có

\(\frac{a}{c}\)=\(\frac{b}{d}\)=\(\frac{a-b}{c-d}\)\(\Rightarrow\)(\(\frac{a}{c}\))^4=(\(\frac{b}{d}\))^4=(\(\frac{a-b}{c-d}\))^4 (3)

Từ (2)và (3)\(\Rightarrow\)(\(\frac{a-b}{c-d}\))^4=\(\frac{a^4-b^4}{c^4-d^4}\)

2 tháng 9 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

22 tháng 10 2016

a) Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\begin{cases}a=kb\\c=kd\end{cases}\)

=> \(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(kb\right)^2+b^2}{\left(kd\right)^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}\) (1)

\(\frac{ab}{cd}=\frac{kbb}{kdd}=\frac{k.b^2}{k.d^2}=\frac{b^2}{d^2}\) (1)

Từ (1) và (2) => \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)

b) Đặt \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k\)

Ta có: \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=k^3\)

Mà: \(k^3=\frac{a}{d}\) => \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)

 

22 tháng 10 2016

a)Ta có:\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

\(\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a}{c}\cdot\frac{b}{d}=\frac{ab}{cd}\)

\(\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\left(đpcm\right)\)