\(\frac{a}{b}\)=\(\frac{c}{d}\) thì 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2016

Do \(\frac{a}{b}=\frac{c}{d}\Rightarrow a.d< b.c\)

=> \(a.d+a.b< b.c+a.b\)

=> a.(b + d) < b.(a + c)

=> \(\frac{a}{b}< \frac{a+c}{b+d}\left(đpcm\right)\)

1 tháng 9 2016

qua đây t cx bik đc mặt thật của TVL, đỉm thì cx đc ók nhưng đừng vì 1 câu mà đánh giá ng` khác vội

Bài lm lại đây:

Do \(\frac{a}{b}=\frac{c}{d}\Rightarrow a.d=b.c\)

=> a.d + a.b = b.c + a.b

=> a.(b + d) = b.(a + c)

=> \(\frac{a}{b}=\frac{a+c}{b+d}\left(đpcm\right)\)

22 tháng 10 2016

áp dụng dãy tỉ số bằng nhau ta có

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)

10 tháng 11 2018

Ta có:a/b = c/d. Suy ra a/c = b/d.

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

a/c = b/d = a + b / c + d = a - b / c - d

Suy ra a + b / a - b = c + d / c - d.

26 tháng 10 2017

TA CÓ \(\frac{a}{b}=\frac{c}{d}=\frac{p}{q}=\frac{am}{bm}=\frac{nc}{nd}=\frac{ep}{eq}\)

ÁP DỤNG TÍNH CHẤT DÃY TỈ SỐ BẰNG NHAU TA CÓ 

\(\frac{a}{b}=\frac{c}{d}=\frac{p}{q}=\frac{ma}{mb}=\frac{nc}{nd}=\frac{ep}{eq}=\frac{ma+nc+ep}{mb+nd+eq}\)(ĐPCM)

24 tháng 10 2017

ADTC dãy tỉ số bằng nhau ta có \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

\(\Rightarrow\hept{\begin{cases}a=b\cdot1=b\\b=c\cdot1=c\\c=a\cdot1=a\end{cases}\Leftrightarrow a=b=c}\)

14 tháng 8 2016

Cô Loan giúp với ạ!

24 tháng 9 2017

a,Cách 1: \(\frac{a+b}{b}=\frac{c+d}{d}\)

=> (a+b)d = b(c+d)

=> ad + bd = bc + bd

=> ad = bc 

=> \(\frac{a}{b}=\frac{c}{d}\)

Cách 2:

\(\frac{a+b}{b}=\frac{c+d}{d}\Rightarrow\frac{a}{b}+1=\frac{c}{d}+1\Rightarrow\frac{a}{b}=\frac{c}{d}\)

b,\(\frac{a}{a-2b}=\frac{c}{c-2d}\Rightarrow a\left(c-2d\right)=c\left(a-2b\right)\Rightarrow ac-2ad=ac-2bc\Rightarrow-2ad=-2bc\Rightarrow ad=bc\Rightarrow\frac{a}{b}=\frac{c}{d}\)

9 tháng 8 2016

\(a.\)\(\frac{a}{b}=\frac{c}{d}\)=>   \(ad=bc\)=>   \(ad+ab=bc+ab\)=> a x ( b + d) = b x ( a + c )

=>  \(\frac{a}{b}=\frac{a+c}{b+d}\left(đpcm\right)\)

\(b.\)\(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)=>  \(\frac{a+b}{c+a}=\frac{a-b}{c-a}\)( Áp dụng tính chất dãy tỉ số bằng nhau )

=>\(\frac{a}{b}=\frac{c}{a}\)=>  \(a^2=bc\)( đpcm)

2 tháng 1 2020

a)

Ta có: \(\frac{a}{b}=\frac{c}{d}.\)

\(\Rightarrow\frac{b}{a}=\frac{d}{c}.\)

\(\Rightarrow\frac{b}{a}-1=\frac{d}{c}-1.\)

\(\Rightarrow\frac{b}{a}-\frac{a}{a}=\frac{d}{c}-\frac{c}{c}\)

\(\Rightarrow\frac{b-a}{a}=\frac{d-c}{c}.\)

\(\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\left(đpcm\right).\)

b)

Ta có: \(\frac{a}{b}=\frac{c}{d}.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}.\)

\(\Rightarrow\frac{a}{b}=\frac{a+c}{b+d}\left(đpcm\right).\)

Chúc bạn học tốt!