\(942^{60}-351^{37}\) chia hết cho2 và 9.

b.

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2016

a)

Ta có

\(351^{37}\) chia hết cho 9 vì 351 chia hết cho 9

\(942^{60}=\left(942^2\right)^{60}\)

Ta có

942 chia hết cho 3

Mà 3 là số nguyên tố

=> 9422 chia hết cho 32

=>  9422  chia hết cho 9

\(\Rightarrow\left(942^2\right)^{30}\) chia hết cho 9

=> đpcm

Cm chia hết cho 2

Vì \(351^{37}\) không chia hết cho 2 mà \(942^{60}\) chia hết cho 2

=> Sai đề

3 tháng 8 2016

a) Các số có c/số tận cung là 2 có lũy thừa được kết quả có c/số tân cung lặp lại theo quy luật 1 nhóm 4 c/số sau (2;4;8;6) 

ta có 60: 4=15(nhóm) => 942^60 có c/số tận cùng là c/số tận cùng của nhóm thứ 15 và là c/số 6 

mặt khác 351^37 có kết quả có c/số tận cùng là 1 (vì 351 có c/số tận cung =1) 

=>kết quả phép trừ 942^60 - 351^37 có c/số tận cùng là: 6-1=5 

=>942^60 - 351^37 chia hết cho 5 

b/ giải thích tương tự câu a ta có 

99^5 có c/số tận cùng là: 9 

98^4 có c/số tận cung là: 6 

97^3 có c/số tận cùng là: 3 

96^2 có c/số tận cùng là: 6 

=> 99^5 - 98^4 + 97^3 - 96^2 có c/số tận cùng là: 9-6+3-6=0 

vậy 99^5 - 98^4 + 97^3 - 96^2 chia hết cho 2 và 5 vì có c/số tận cung là 0 (dâu hiệu chia hết cho 2 và 5)

Bài 2: Nếu n = 0 => 5n - 1= 1 - 1 = 0 chia hết cho 4

Nếu n = 1 => 5n - 1 = 5 - 1 = 4 chia hết cho 3

Nếu n > 2 => 5n - 1 = (.....25) - 1 = (....24) có hai cs tận cùng là số chia hết cho 4 thì số đó chia hết cho 4

 

8 tháng 10 2017

Bài 1:

a,Ta có:\(\dfrac{n+8}{n}=1+\dfrac{8}{n}\)

Để \(n+8⋮n\) thì \(8⋮n\)

\(\Rightarrow n\in\left\{1;2;4;8\right\}\)

Vậy.....

b.c tương tự

Bài 2:

a.\(942^{60}-351^5=\left(.......6\right)-\left(..........1\right)=\left(.......5\right)⋮5\)

Do đó:\(942^{60}-351^{37}⋮5\left(dpcm\right)\)

b,\(99^5-98^4+97^3-96^2\\ =\left(.....9\right)-\left(....6\right)+\left(..........3\right)-\left(..........6\right)=\left(...........0\right)⋮10\)

Do đó:\(99^5-98^4+97^3-96^2⋮2;5\left(dpcm\right)\)

15 tháng 11 2022

Bài 2:

a: \(10^n-1=\left(10-1\right)\cdot A=9A⋮9\)

b: \(10^n+8=\left(10+8\right)\cdot C=18C⋮9\)

26 tháng 12 2017

1. \(A=2^{2016}-1\)

\(2\equiv-1\left(mod3\right)\\ \Rightarrow2^{2016}\equiv1\left(mod3\right)\\ \Rightarrow2^{2016}-1\equiv0\left(mod3\right)\\ \Rightarrow A⋮3\)

\(2^{2016}=\left(2^4\right)^{504}=16^{504}\)

16 chia 5 dư 1 nên 16^504 chia 5 dư 1

=> 16^504-1 chia hết cho 5

hay A chia hết cho 5

\(2^{2016}-1=\left(2^3\right)^{672}-1=8^{672}-1⋮7\)

lý luận TT trg hợp A chia hết cho 5

(3;5;7)=1 = > A chia hết cho 105

2;3;4 TT ạ !!

18 tháng 6 2018

a, 4 + \(4^2\) + \(4^3\) + ... + \(4^{60}\) chia hết cho 5

= ( 4 + \(4^2\) ) + ( \(4^3\) + \(4^4\) ) +... + ( \(4^{59}\) + \(4^{60}\))

= ( 4 + \(4^2\) ) + \(4^3\) . ( 4 + \(4^2\) ) +... + \(4^{59}\). ( 4 + \(4^2\) )

= 20 + \(4^3\) . 20 + ... + \(4^{59}\) . 20

= 20 . ( 1 + \(4^3\) + ... + \(4^{59}\) ) chia hết cho 5

4 + \(4^2\) + \(4^3\) + ... + \(4^{60}\) chia hết cho 21

= ( 4 + \(4^2\) + \(4^3\) ) + ( \(4^4\) + \(4^5\) + \(4^6\) ) + ... + ( \(4^{58}\)+ \(4^{59}\) + \(4^{60}\) )

= ( 4 + \(4^2\) + \(4^3\) ) + \(4^4\) . ( 4 + \(4^2\) + \(4^3\) ) + ... + \(4^{58}\) . ( 4 + \(4^2\) + \(4^3\) )

= 84 + \(4^4\) . 84 + .... + \(4^{58}\) . 84

= 84 . ( 1 + \(4^4\) + ... + \(4^{58}\) ) chia hết cho 21

b, 5 + \(5^2\) + \(5^3\) + ... + \(5^{10}\) chia hết cho 6

= ( 5 + \(5^2\) ) + ( \(5^3\) + \(5^4\) ) + ... + ( \(5^9\) + \(5^{10}\) )

= ( 5 + \(5^2\) ) + \(5^3\) . ( 5 + \(5^2\) ) + ... + \(5^9\) . ( 5 + \(5^2\) )

= 30 + \(5^3\) . 30 + ... + \(5^9\) . 30

= 30 . ( 1 + \(5^3\) + ... + \(5^9\) ) chia hết cho 6

1) Tính hợp lýH = \(\frac{\left(3.4.2^{16}\right)^2}{11.2^{13}.4^{11}-16^9}\)                                                                              I = \(\frac{5.4^{15}.9^9-4.3^{20}.8^9}{5.2^9.6^{19}-7.2^{29}.27^6}\)2) Chứng minh rằnga)\(942^{60}-351^{37}\)  chia hết cho 5                                                             b)\(99^5-98^4+97^3-96^2\)chia hết cho 2 và 5c)\(10^n-1\)chia hết cho...
Đọc tiếp

1) Tính hợp lý

H = \(\frac{\left(3.4.2^{16}\right)^2}{11.2^{13}.4^{11}-16^9}\)                                                                              I = \(\frac{5.4^{15}.9^9-4.3^{20}.8^9}{5.2^9.6^{19}-7.2^{29}.27^6}\)

2) Chứng minh rằng

a)\(942^{60}-351^{37}\)  chia hết cho 5                                                             b)\(99^5-98^4+97^3-96^2\)chia hết cho 2 và 5

c)\(10^n-1\)chia hết cho 9                                                                              d)\(10^n+8\)chia hết cho 9

3)Chứng minh rằng với mọi \(n\in N\)thì các số sau là hai số nguyên tố cùng nhau

a)\(7n+10\)và  \(5n+7\)                                                                           b)\(n+2\)và  \(2n+3\)

4): a) Cho \(A=2+2^2+2^3+...+2^{60}\).Chứng minh rằng a chia hết cho 3, 7, và 15.

     b) Cho \(B=3+3^3+3^5+...+3^{1991}\).Chứng minh rằng B chia hết cho 13 và 41.

5) a)Tìm hai số tự nhiên có tích bằng 720 và có ƯCLN bằng 6.

    b)Tìm hai số tự nhiên có tích bằng 720 và có BCNN bằng 120.

    c)Tìm hai số tự nhiên a và b biết ƯCLN(a; b) = 6 và BCNN(a; b) = 120

Mọi người làm hộ cứu nguy giúp em với, sắp thi học kì rồi! Thanks!

0
1 tháng 10 2017

Vì 13 là lẻ \(\Rightarrow\) 13, 132, 133, 134, 135, 136 là lẻ.

Mà lẻ + lẻ + lẻ + lẻ + lẻ + lẻ = chẵn nên 13 + 132 + 133 + 134 + 135 + 136 là chẵn. \(\Rightarrow\) 13 + 132 + 133 + 134 + 135 + 136 \(⋮\) 2

\(\Rightarrow\) ĐPCM