Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có:
\(3^{2n+1}+2^{n+2}=9^n.3+2^n.4\)
\(=9^n.3-2^n.3+2^n.7=3\left(9^n-2^n\right)+2^n.7\)
Ta lại có:
\(9^n-2^n⋮9-2=7;2n.7⋮7\)
\(\Rightarrow3^{2n+1}+2^{n+2}⋮7\left(dpcm\right)\)
a)
Ta có
\(351^{37}\) chia hết cho 9 vì 351 chia hết cho 9
\(942^{60}=\left(942^2\right)^{60}\)
Ta có
942 chia hết cho 3
Mà 3 là số nguyên tố
=> 9422 chia hết cho 32
=> 9422 chia hết cho 9
\(\Rightarrow\left(942^2\right)^{30}\) chia hết cho 9
=> đpcm
Cm chia hết cho 2
Vì \(351^{37}\) không chia hết cho 2 mà \(942^{60}\) chia hết cho 2
=> Sai đề
a) Các số có c/số tận cung là 2 có lũy thừa được kết quả có c/số tân cung lặp lại theo quy luật 1 nhóm 4 c/số sau (2;4;8;6)
ta có 60: 4=15(nhóm) => 942^60 có c/số tận cùng là c/số tận cùng của nhóm thứ 15 và là c/số 6
mặt khác 351^37 có kết quả có c/số tận cùng là 1 (vì 351 có c/số tận cung =1)
=>kết quả phép trừ 942^60 - 351^37 có c/số tận cùng là: 6-1=5
=>942^60 - 351^37 chia hết cho 5
b/ giải thích tương tự câu a ta có
99^5 có c/số tận cùng là: 9
98^4 có c/số tận cung là: 6
97^3 có c/số tận cùng là: 3
96^2 có c/số tận cùng là: 6
=> 99^5 - 98^4 + 97^3 - 96^2 có c/số tận cùng là: 9-6+3-6=0
vậy 99^5 - 98^4 + 97^3 - 96^2 chia hết cho 2 và 5 vì có c/số tận cung là 0 (dâu hiệu chia hết cho 2 và 5)
Bài 2: Nếu n = 0 => 5n - 1= 1 - 1 = 0 chia hết cho 4
Nếu n = 1 => 5n - 1 = 5 - 1 = 4 chia hết cho 3
Nếu n > 2 => 5n - 1 = (.....25) - 1 = (....24) có hai cs tận cùng là số chia hết cho 4 thì số đó chia hết cho 4
1. \(A=2^{2016}-1\)
\(2\equiv-1\left(mod3\right)\\ \Rightarrow2^{2016}\equiv1\left(mod3\right)\\ \Rightarrow2^{2016}-1\equiv0\left(mod3\right)\\ \Rightarrow A⋮3\)
\(2^{2016}=\left(2^4\right)^{504}=16^{504}\)
16 chia 5 dư 1 nên 16^504 chia 5 dư 1
=> 16^504-1 chia hết cho 5
hay A chia hết cho 5
\(2^{2016}-1=\left(2^3\right)^{672}-1=8^{672}-1⋮7\)
lý luận TT trg hợp A chia hết cho 5
(3;5;7)=1 = > A chia hết cho 105
2;3;4 TT ạ !!
a, 2n+1 chia hết cho 21=>21 thuộc Ư(2n+1)
=>2n+1 thuộc {1,3,7,21}
2n+1 | 1 | 3 | 7 | 21 |
n | 0 | 1 | 3 | 10 |
Vậy n thuộc{0,1,3,10}
a) Giải:
Đặt \(A_n=11^{n+2}+12^{2n+1}\)\((*)\) Với \(n=0\) ta có:
\(A_0=11^2+12^1=133\) \(⋮133\Rightarrow\) \((*)\) đúng
Giả sử \((*)\) đúng đến giá trị \(k=n\) tức là:
\(B_k=11^{k+2}+12^{2k+1}\) \(⋮133\left(1\right)\)
Xét \(B_{k+1}-B_k\)
\(=11^{k+1+2}+12^{2\left(k+1\right)+1}-\left(11^{k+2}+12^{2k+1}\right)\)
\(=11^{k+3}-11^{k+2}+12^{2k+3}-12^{2k+1}\)
\(=10.11^{k+2}+143.12^{2k+1}\)
\(=10.121.11^k+143.12.144^k\)
\(\equiv\) \(10.121.11^k+10.12.11^k\)
\(\equiv\) \(10.11^k\left(121+12\right)\) \(\equiv\) \(0\left(mod133\right)\)
Theo giả thiết quy nạy \(\left(1\right)\) ta có: \(B_k⋮133\Leftrightarrow B_{k+1}⋮133\)
Hay \((*)\) đúng với \(n=k+1\) \(\Rightarrow\) Đpcm
1. TỔNG (HIỆU) SAU CÓ CHIA HẾT CHO 2, CHO 5 KHÔNG?
a) 1. 2. 3. 4. 5+ 52:
Chia hết cho 2.
Không chia hết cho 5.
b)1. 2. 3. 4. 5- 75:
Chia hết cho 5.
Không chia hết cho 2.
2. TỔNG (HIỆU) SAU CÓ CHIA HẾT CHO 3, CHO 9 KHÔNG?
1012- 1= 99…99 (12 chữ số 9):
Chia hết cho cả 3 và 9.
1010+ 2= 100…02 (9 chữ số 0):
Chia hết cho 3.
Không chia hết cho 9.
3.
87ab chia hết cho 9
=> 8+ 7+ a+ b chia hết cho 9.
= 15+ a+ b chia hết cho 9.
=>a+ b € {3, 12}
Nếu a- b= 4 thì a+ b= (vô lý).
Nếu a- b= 4 thì a+ b= 12 (chọn).
Vậy a= 8, b= 4 (vì 8- 4= 4).
1.a)
(1.2.3.4.5)\(⋮\)2 va 52\(⋮\)2 nên tổng (1.2.3.4.5)\(⋮\)2
(1.2.3.4.5)\(⋮\)5 nhưng 52\(⋮̸\)5 nen tong (1.2.3.4.5)\(⋮̸\)5
b) (1.2.3.4.5)\(⋮\)2 nhung 75\(⋮̸\)2 nên tổng (1.2.3.4.5)\(⋮̸\)2
(1.2.3.4.5)\(⋮\)5 va 75\(⋮\)5 nên tổng (1.2.3.4.5)\(⋮\)5