K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2017

Bài 1:

a,Ta có:\(\dfrac{n+8}{n}=1+\dfrac{8}{n}\)

Để \(n+8⋮n\) thì \(8⋮n\)

\(\Rightarrow n\in\left\{1;2;4;8\right\}\)

Vậy.....

b.c tương tự

Bài 2:

a.\(942^{60}-351^5=\left(.......6\right)-\left(..........1\right)=\left(.......5\right)⋮5\)

Do đó:\(942^{60}-351^{37}⋮5\left(dpcm\right)\)

b,\(99^5-98^4+97^3-96^2\\ =\left(.....9\right)-\left(....6\right)+\left(..........3\right)-\left(..........6\right)=\left(...........0\right)⋮10\)

Do đó:\(99^5-98^4+97^3-96^2⋮2;5\left(dpcm\right)\)

3 tháng 8 2016

a)

Ta có

\(351^{37}\) chia hết cho 9 vì 351 chia hết cho 9

\(942^{60}=\left(942^2\right)^{60}\)

Ta có

942 chia hết cho 3

Mà 3 là số nguyên tố

=> 9422 chia hết cho 32

=>  9422  chia hết cho 9

\(\Rightarrow\left(942^2\right)^{30}\) chia hết cho 9

=> đpcm

Cm chia hết cho 2

Vì \(351^{37}\) không chia hết cho 2 mà \(942^{60}\) chia hết cho 2

=> Sai đề

3 tháng 8 2016

a) Các số có c/số tận cung là 2 có lũy thừa được kết quả có c/số tân cung lặp lại theo quy luật 1 nhóm 4 c/số sau (2;4;8;6) 

ta có 60: 4=15(nhóm) => 942^60 có c/số tận cùng là c/số tận cùng của nhóm thứ 15 và là c/số 6 

mặt khác 351^37 có kết quả có c/số tận cùng là 1 (vì 351 có c/số tận cung =1) 

=>kết quả phép trừ 942^60 - 351^37 có c/số tận cùng là: 6-1=5 

=>942^60 - 351^37 chia hết cho 5 

b/ giải thích tương tự câu a ta có 

99^5 có c/số tận cùng là: 9 

98^4 có c/số tận cung là: 6 

97^3 có c/số tận cùng là: 3 

96^2 có c/số tận cùng là: 6 

=> 99^5 - 98^4 + 97^3 - 96^2 có c/số tận cùng là: 9-6+3-6=0 

vậy 99^5 - 98^4 + 97^3 - 96^2 chia hết cho 2 và 5 vì có c/số tận cung là 0 (dâu hiệu chia hết cho 2 và 5)

Bài 2: Nếu n = 0 => 5n - 1= 1 - 1 = 0 chia hết cho 4

Nếu n = 1 => 5n - 1 = 5 - 1 = 4 chia hết cho 3

Nếu n > 2 => 5n - 1 = (.....25) - 1 = (....24) có hai cs tận cùng là số chia hết cho 4 thì số đó chia hết cho 4

 

11 tháng 10 2015

tớ cũng có đề bài giống nguyễn thị bích ngọc các cậu giải cho tớ nhé

14 tháng 10 2015

Ai hởHoàng Quốc Việt

29 tháng 11 2017

Đề bài là tìm n chứ:

a) Ta có:

\(n+5⋮n+2\)

\(\Rightarrow\left(n+2\right)+3⋮n+2\)

\(\Rightarrow3⋮n+2\)

\(\Rightarrow n+2\in U\left(3\right)=\left\{-1;1;-3;3\right\}\)

\(\Rightarrow\left\{{}\begin{matrix}n+2=-1\Rightarrow n=-3\\n+2=1\Rightarrow n=-1\\n+2=-3\Rightarrow n=-5\\n+2=3\Rightarrow n=1\end{matrix}\right.\)

Vậy \(n\in\left\{-3;-1;-5;1\right\}\)

b) Ta có:

\(2n+1⋮n-5\)

\(\Rightarrow\left(2n-10\right)+11⋮n-5\)

\(\Rightarrow2\left(n-5\right)+11⋮n-5\)

\(\Rightarrow11⋮n-5\)

\(\Rightarrow n-5\in U\left(11\right)=\left\{-1;1;-11;11\right\}\)

\(\Rightarrow\left\{{}\begin{matrix}n-5=-1\Rightarrow n=4\\n-5=1\Rightarrow n=6\\n-5=-11\Rightarrow n=-6\\n-5=11\Rightarrow n=16\end{matrix}\right.\)

Vậy \(n\in\left\{4;6;-6;16\right\}\)

c) Ta có:

\(n^2+3n-13⋮n+3\)

\(\Rightarrow n\left(n+3\right)-13⋮n+3\)

\(\Rightarrow-13⋮n+3\)

\(\Rightarrow n+3\in U\left(13\right)=\left\{-1;1;-13;13\right\}\)

\(\Rightarrow\left\{{}\begin{matrix}n+3=-1\Rightarrow n=-4\\n+3=1\Rightarrow n=-2\\n+3=-13\Rightarrow n=-16\\n+3=13\Rightarrow n=10\end{matrix}\right.\)

Vậy \(n\in\left\{-4;-2;-16;10\right\}\)

5 tháng 1 2017

bài 1

Áp dụng a^ n -b^ n chia hết cho a-b với mọi n thuộc N : a ^n -1+ b ^n+1 chia hết cho a+b với mọi n thuộc N

=> 9^ 2n-1

= máy tính bỏ túi là xong 

bài 2

a) Ta có : 942 60 -351 37=(942 4 )15 -351 37=(...6)15 -351 37=(...6)-(...1)=(...5)

vì (...5) có tận cùng là 5

=> (...5) chia hết cho 5

b) Ta có : 99^ 5=(99^ 4 )(99 ^1 )=(...1).(...9)=(....9)

98^ 4=(...6)

97^ 3=97^ 2 .97=(...9)(..7)=(..3)

96 ^2=(....6)

=> (...9)-(...6)+(...3)-(...6)=(...0)

Vây (....0) chia hết cho cả 2 và 5 

bài 3

A = 405 n + 2^405 + m2

405^ n tận cùng là 5 2 ^405 = (2^ 4 )101 . 2

= (...6)101 . 2 = (..6).2 = (..2)

m2 tận cùng là 0;1;4;5;6;9

Vậy chữ số tận cùng của A có thể là 7 ; 8 ; 3 ; 2 ; 6

n không có tận cùng là 0

Vậy A không chia hết cho 10 

5 tháng 1 2017

bài 4

a) Chữ số tận cùng của số đuôi 1 lũy thừa luôn là 1
b) Số đuôi 8 thì: ^(2n+1) thì đuôi là 8
^(2n+2) thì đuôi là 4
^(2n+3) thì đuôi là 2
^(2n+4) thì đuôi là 6
218=108.2+2=> Có đuôi là 4

26 tháng 7 2020

Câu b) 7700 cũng gần như thế thôi ông Giáo ạ

Bg

Ta có: 2427700 - 761025 = 2424.1925 - (...6)

= (2424)1925 - (...6)

= (...6)1925 - (...6

= (...6) - (...6

= (...0\(⋮\)10

=> 2427700 - 761025 \(⋮\)10

=> ĐPCM

26 tháng 7 2020

a) Ta có: \(942^{60}=\left(942^4\right)^{15}=\left(\overline{...6}\right)^{15}=\overline{...6}\)

               \(351^{37}=\overline{...1}\)

Vì \(\left(\overline{...6}\right)-\left(\overline{...1}\right)=\overline{...5}⋮5\) nên \(942^{60}-351^{37}⋮5\)  (đpcm)

b) Ta có: \(242^{2700}=\left(2400^4\right)^{675}=\left(\overline{...6}\right)^{675}=\overline{...6}\)

              \(76^{1025}=\overline{...6}\)

Vì \(\left(\overline{...6}\right)-\left(\overline{...6}\right)=\overline{...0}⋮10\) nên \(242^{2700}-76^{1025}⋮10\)  (đpcm)

c) Để 995 - 984 + 973 - 962 chia hết cho cả 2 và 5 thì 995 - 984 + 973 - 962 phải chia hết cho 10

Có: \(99^5=99^2.99=\overline{...1}.99=\overline{...9}\)

      \(98^4=\left(98^2\right)^2=\overline{...6}\)

      \(97^3=\overline{...3}\)

       \(96^2=\overline{...6}\)

\(\left(\overline{...9}\right)-\left(\overline{...6}\right)+\left(\overline{...3}\right)-\left(\overline{...6}\right)=\overline{...0}⋮10\)

\(\Rightarrow99^5-98^4+97^3-96^2⋮10\)  (đpcm)

26 tháng 7 2020

à mình nhầm câu b sửa số 242^2700 thành 242^7700 nhé