Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(25x^2+16y^2=50xy\)
\(\Leftrightarrow\) \(\left(5x+4y\right)^2-40xy=50xy\)
\(\Leftrightarrow\) \(\left(5x+4y\right)^2=90xy\)
Mặt khác, ta cũng có: \(25x^2+16y^2=50xy\)
\(\Leftrightarrow\) \(\left(5x-4y\right)^2=10xy\)
Do đó:
\(P^2=\frac{\left(5x-4y\right)^2}{\left(5x+4y\right)^2}=\frac{10xy}{90xy}=\frac{1}{9}\)
Vậy, \(P'=\frac{1+\frac{1}{9}}{1-\frac{1}{9}}=1\frac{1}{4}\)
1)
\(25x^2-40xy+16y^2=10xy\Leftrightarrow\left(5x-4y\right)^2=10xy\)
\(25x^2+40xy+16y^2=10xy\Leftrightarrow\left(5x+4y\right)^2=90xy\)
\(P^2=\frac{1}{9}\Leftrightarrow Q=\frac{1+P^2}{1-P^2}=\frac{1+\frac{1}{81}}{1-\frac{1}{81}}=\frac{82}{80}=\frac{41}{40}\)
\(M=\left(3+x\right)-\left(4x+1\right)-x\left(2+x\right)\)
\(=3+x-4x-1-2x-x^2\)
\(=-x^2-5x+2\)
Đề sai !
Để P là số nguyên thì \(3x^3-5x^2+9x-15-1⋮3x-5\)
\(\Rightarrow3x-5\in\left\{1;-1\right\}\)
=>x=2(vì x là số nguyên)
\(B=x^4-2x^3+2x^2-4x+5\)
\(=\left(x^4-2x^3+x^2\right)+\left(x^2-4x+4\right)+1\)
\(=\left(x^2-x\right)^2+\left(x-2\right)^2+1\)
Vì: \(\begin{cases}\left(x^2-x\right)^2\ge0\\\left(x-2\right)^2\ge0\end{cases}\)\(\Rightarrow\left(x^2-x\right)^2+\left(x-2\right)^2\ge0\)
\(\Rightarrow\left(x^2-x\right)^2+\left(x-2\right)^2+1>0\)
Kết luận...............................................
cmr bieu thuc sau luon luon co gia tri duong voi moi gia tri cua bien: 3x^2 -5x+3
a)\(x^2+x+2=\left(x^2+2.\frac{1}{2}.x+\frac{1}{4}\right)+\frac{7}{4}=\left(x+\frac{1}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}>0\)
=>đpcm
b)\(\left(x+3\right)\left(x-11\right)+2003=x^2-8x-33+2003=x^2-8x+1970\)
\(=\left(x^2-2.x.4+16\right)+1954=\left(x-4\right)^2+1954\ge1954>0\)
=>đpcm
de ma ban