Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Rút gọn : \(M=5+5^2+5^3+...+5^{100}\)
b) Chứng tỏ : \(N=5^1+5^2+5^3+5^4+...+5^{2010}⋮6\) và \(31\)
a, \(M=5+5^2+5^3+...+5^{100}\)
\(\Rightarrow5M=5^2+5^3+5^4+...+5^{101}\)
\(\Rightarrow5M-M=\left(5^2+5^3+5^4+...+5^{101}\right)-\left(5+5^2+5^3+....+5^{100}\right)\)
\(\Rightarrow4M=5^{101}-5\)
\(\Rightarrow M=\frac{5^{101}-5}{4}\)
Vậy : \(M=\frac{5^{101}-5}{4}\)
A=2^1+2^2+2^3+2^4+...+2^2010
=(2+2^2)+(2^3+2^4)+...+(2^2010+2^2011)
=2.(1+2)+2^3.(1+2)+...+2^2010.(1+2)
=2.3+2^3.3+...+2^2010.3
=(2+2^3+2^2010).3
=> A chia het cho 3
a) \(M=5+5^2+5^3+...+5^{100}\)
=> \(5M=\left(5+5^2+5^3+...+5^{100}\right).5\)
= \(5^2+5^3+5^4+...+5^{101}\)
=> \(5M-M=\left(5^2+5^3+5^4+...+5^{101}\right)-\left(5+5^2+5^3+...+5^{100}\right)\)
=> \(4M=5^{101}-5\)
=> \(M=\frac{5^{101}-5}{4}\)
( 21 + 22 ) + ( 23 + 24 ) + ... + ( 22009 + 22010 )
= 2. ( 1 + 2 ) + 23 . ( 1 + 2 ) + ... + 22009 . ( 1 + 2 )
= 3 . ( 2 + 23 + ... + 22009 ) chia hết cho 3. => ĐPCM
Câu 3:
a: \(\Leftrightarrow n-1+4⋮n-1\)
\(\Leftrightarrow n-1\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(n\in\left\{2;0;3;-1;5;-3\right\}\)
b: \(\Leftrightarrow4n+2+1⋮2n+1\)
\(\Leftrightarrow2n+1\in\left\{1;-1\right\}\)
hay \(n\in\left\{0;-1\right\}\)
c: \(\Leftrightarrow4n-5=13k\left(k\in Z\right)\)
\(\Leftrightarrow n=\dfrac{13k+5}{4}\)
\(A=5+5^2+5^3+5^4+........+5^{2010}\)
A = ( 1 + 5 + 52 ) + ............ + ( 52008 + 52009 + 52010 )
A = 31 + ......... + 31( 1 + 5 + 52 )
Mà 31\(⋮\)31 => A \(⋮\)31 ( đpcm )
Ta có :
\(N=5+5^2+5^3+....+5^{2010}\)
\(\Rightarrow N=5\left(1+5+5^2\right)+.....+5^{2008}\left(1+5+5^2\right)\)
\(\Rightarrow N=5.31+....+2^{2008}.31\)
=> N chia hết cho 31
\(N=5^1+5^2+5^3+5^4+...+5^{2010}\)
\(=5\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+...+5^{2018}\left(1+5+5^2\right)\)
\(=31\left(5+5^4+...+5^{2018}\right)⋮31\)
=>đpcm