Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu bạn đã học phương trình đặc trưng thì khá dễ, chưa học thì chúng ta đành liên hợp:
ĐKXĐ: \(x;y\ge-2\)
\(\sqrt{x+2}-\sqrt{y+2}+x^3-y^3=0\)
\(\Leftrightarrow\frac{x-y}{\sqrt{x+2}+\sqrt{y+2}}+\left(x-y\right)\left(\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left[\frac{1}{\sqrt{x+2}+\sqrt{y+2}}+\left(x+y\right)^2+\frac{3y^2}{4}\right]=0\)
\(\Leftrightarrow x-y=0\) (ngoặc phía sau luôn dương)
\(\Rightarrow x=y\)
Vậy \(A=x^2+2x^2-2x^2+2x+10=\left(x+1\right)^2+9\ge9\)
\(\Rightarrow A_{min}=9\) khi \(x=y=-1\)
\(\sqrt{x+2}+x^3=y^3+\sqrt{y+2}\)
nếu x>y =>vt>vp
nếu x<y => vt<vp
nếu x=y => VT=VP
=> x=y
ta có\(M=-x^2+2x+2015=-\left(x-1\right)^2+2016\)
=>M max=2016<=>x=y=1
Câu 2-Ta có x^2+y^2=5
(x+y)^2-2xy=5
Đặt x+y=S. xy=P
S^2-2P=5
P=(S^2-5)/2
Ta lại có P=x^3+y^3=(x+y)^3-3xy(x+y)=S^3-3SP=S^3-3S(S^2-5)/2
Rùi tự tính
Câu1
Ta có P<=a+a/4+b+a/12+b/3+4c/3 (theo bdt cô sy)
=> P<=4/3(a+b+c)=4/3
Vậy Max p =4/3 khi a=4b=16c
Bài 1:
\(P=\frac{2x^2+y^2-2xy}{xy}=\frac{2x}{y}+\frac{y}{x}-2=\frac{7x}{4y}+(\frac{x}{4y}+\frac{y}{x})-2\)
Áp dụng BĐT Cô-si cho các số dương:
\(\frac{x}{4y}+\frac{y}{x}\geq 2\sqrt{\frac{x}{4y}.\frac{y}{x}}=1\)
\(\frac{7x}{4y}\geq \frac{7.2y}{4y}=\frac{7}{2}\) do $x\geq 2y$
Do đó: \(P\geq \frac{7}{2}+1-2=\frac{5}{2}\)
Vậy $P_{\min}=\frac{5}{2}$ khi $x=2y$
Bài 2:
\(P=\frac{x^2+y^2}{x^2y^2}+\frac{x^2y^2}{x^2+y^2}=\frac{x^2+y^2}{\frac{1}{4}}+\frac{1}{4(x^2+y^2)}=4(x^2+y^2)+\frac{1}{4(x^2+y^2)}\)
Áp dụng BĐT Cô-si :
\(\frac{x^2+y^2}{4}+\frac{1}{4(x^2+y^2)}\geq 2\sqrt{\frac{x^2+y^2}{4}.\frac{1}{4(x^2+y^2)}}=\frac{1}{2}(1)\)
\(x^2+y^2\geq 2\sqrt{x^2y^2}=2|xy|=2.\frac{1}{2}=1\)
\(\Rightarrow \frac{15(x^2+y^2)}{4}\geq \frac{15}{4}(2)\)
Lấy \((1)+(2)\Rightarrow P\geq \frac{15}{4}+\frac{1}{2}=\frac{17}{4}\)
Vậy \(P_{\min}=\frac{17}{4}\Leftrightarrow x=y=\frac{1}{\sqrt{2}}\)
a) \(B=-3x^2-4x+1\)
\(B=-\left(3x^2+4x-1\right)\)
\(B=-\left[\sqrt{3}x+2.\sqrt{3}x.+\dfrac{2\sqrt{3}}{3}+\left(\dfrac{2\sqrt{3}}{3}\right)^2-\left(\dfrac{2\sqrt{3}}{3}\right)^2-1\right]\)
\(B=-\left(\sqrt{3}x+\dfrac{2\sqrt{3}}{3}\right)^2+\dfrac{7}{3}\le\dfrac{7}{3}\)
\(Max_B=\dfrac{7}{3}\) khi \(x=\dfrac{-2}{3}\)
b) \(C\left(x\right)=x^4-10x^3+26x^2-10x+30\)
\(=\left(x^2\right)^2-2.x^2.5x+\left(5x\right)^2+x^2-2.x.5+5^2+5\)
\(=\left(x^2-5x\right)^2+\left(x-5\right)^2+5\)
\(C\left(y\right)=\left(y+1\right)\left(y+2\right)\left(y+3\right)\left(y+4\right)\)
Nhóm (y+1)(y+4)=t
Nhóm (y+2)(y+3)=t+2
Xong tìm Min được liền
c) Min=2010
d) Viết đề thiếu dấu, có vấn đề, xem lại
e) C= -[(x-y)2+2(x-y).7+72+x2-2.x.2+22-1945]
Xong tìm được Max
\(A=x^3+y^3-2xy=\left(x+y\right)\left(x^2-xy+y^2\right)-2xy=2x^2-4xy-2y^2\)
\(=2\left(x-y\right)^2\ge0.\text{ Dấu bằng: }x=y=1\)