\(x^3+y^3-2xy\) cho x+y=2 tình gtnn của a

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2020

\(A=x^3+y^3-2xy=\left(x+y\right)\left(x^2-xy+y^2\right)-2xy=2x^2-4xy-2y^2\)

\(=2\left(x-y\right)^2\ge0.\text{ Dấu bằng: }x=y=1\)

NV
19 tháng 3 2019

Nếu bạn đã học phương trình đặc trưng thì khá dễ, chưa học thì chúng ta đành liên hợp:

ĐKXĐ: \(x;y\ge-2\)

\(\sqrt{x+2}-\sqrt{y+2}+x^3-y^3=0\)

\(\Leftrightarrow\frac{x-y}{\sqrt{x+2}+\sqrt{y+2}}+\left(x-y\right)\left(\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left[\frac{1}{\sqrt{x+2}+\sqrt{y+2}}+\left(x+y\right)^2+\frac{3y^2}{4}\right]=0\)

\(\Leftrightarrow x-y=0\) (ngoặc phía sau luôn dương)

\(\Rightarrow x=y\)

Vậy \(A=x^2+2x^2-2x^2+2x+10=\left(x+1\right)^2+9\ge9\)

\(\Rightarrow A_{min}=9\) khi \(x=y=-1\)

19 tháng 3 2019

ok,cảm ơn bạn

7 tháng 3 2019

\(\sqrt{x+2}+x^3=y^3+\sqrt{y+2}\)

nếu x>y =>vt>vp

nếu x<y => vt<vp

nếu x=y => VT=VP

=> x=y

ta có\(M=-x^2+2x+2015=-\left(x-1\right)^2+2016\)

=>M max=2016<=>x=y=1

10 tháng 4 2017

Câu 2-Ta có x^2+y^2=5

(x+y)^2-2xy=5

Đặt x+y=S. xy=P

S^2-2P=5

P=(S^2-5)/2

Ta lại có P=x^3+y^3=(x+y)^3-3xy(x+y)=S^3-3SP=S^3-3S(S^2-5)/2

Rùi tự tính

10 tháng 4 2017

Câu1

Ta có P<=a+a/4+b+a/12+b/3+4c/3 (theo bdt cô sy)

=> P<=4/3(a+b+c)=4/3

Vậy Max p =4/3 khi a=4b=16c 

AH
Akai Haruma
Giáo viên
17 tháng 7 2019

Bài 1:
\(P=\frac{2x^2+y^2-2xy}{xy}=\frac{2x}{y}+\frac{y}{x}-2=\frac{7x}{4y}+(\frac{x}{4y}+\frac{y}{x})-2\)

Áp dụng BĐT Cô-si cho các số dương:

\(\frac{x}{4y}+\frac{y}{x}\geq 2\sqrt{\frac{x}{4y}.\frac{y}{x}}=1\)

\(\frac{7x}{4y}\geq \frac{7.2y}{4y}=\frac{7}{2}\) do $x\geq 2y$

Do đó: \(P\geq \frac{7}{2}+1-2=\frac{5}{2}\)

Vậy $P_{\min}=\frac{5}{2}$ khi $x=2y$

AH
Akai Haruma
Giáo viên
17 tháng 7 2019

Bài 2:
\(P=\frac{x^2+y^2}{x^2y^2}+\frac{x^2y^2}{x^2+y^2}=\frac{x^2+y^2}{\frac{1}{4}}+\frac{1}{4(x^2+y^2)}=4(x^2+y^2)+\frac{1}{4(x^2+y^2)}\)

Áp dụng BĐT Cô-si :

\(\frac{x^2+y^2}{4}+\frac{1}{4(x^2+y^2)}\geq 2\sqrt{\frac{x^2+y^2}{4}.\frac{1}{4(x^2+y^2)}}=\frac{1}{2}(1)\)

\(x^2+y^2\geq 2\sqrt{x^2y^2}=2|xy|=2.\frac{1}{2}=1\)

\(\Rightarrow \frac{15(x^2+y^2)}{4}\geq \frac{15}{4}(2)\)

Lấy \((1)+(2)\Rightarrow P\geq \frac{15}{4}+\frac{1}{2}=\frac{17}{4}\)

Vậy \(P_{\min}=\frac{17}{4}\Leftrightarrow x=y=\frac{1}{\sqrt{2}}\)

11 tháng 8 2017

a) \(B=-3x^2-4x+1\)

\(B=-\left(3x^2+4x-1\right)\)

\(B=-\left[\sqrt{3}x+2.\sqrt{3}x.+\dfrac{2\sqrt{3}}{3}+\left(\dfrac{2\sqrt{3}}{3}\right)^2-\left(\dfrac{2\sqrt{3}}{3}\right)^2-1\right]\)

\(B=-\left(\sqrt{3}x+\dfrac{2\sqrt{3}}{3}\right)^2+\dfrac{7}{3}\le\dfrac{7}{3}\)

\(Max_B=\dfrac{7}{3}\) khi \(x=\dfrac{-2}{3}\)

b) \(C\left(x\right)=x^4-10x^3+26x^2-10x+30\)

\(=\left(x^2\right)^2-2.x^2.5x+\left(5x\right)^2+x^2-2.x.5+5^2+5\)

\(=\left(x^2-5x\right)^2+\left(x-5\right)^2+5\)

\(C\left(y\right)=\left(y+1\right)\left(y+2\right)\left(y+3\right)\left(y+4\right)\)

Nhóm (y+1)(y+4)=t

Nhóm (y+2)(y+3)=t+2

Xong tìm Min được liền

c) Min=2010

d) Viết đề thiếu dấu, có vấn đề, xem lại

e) C= -[(x-y)2+2(x-y).7+72+x2-2.x.2+22-1945]

Xong tìm được Max

10 tháng 8 2017

@Nguyễn Quang Định @Phương An @Hoàng Lê Bảo Ngọc

30 tháng 5 2017

\(\sqrt{x+2}\) +y3=\(\sqrt{y+2}\) +y3

\(\Rightarrow\) x=y

ta co :B=x2+2xy-2y2+2y+10 

\(\Leftrightarrow\)B=x2+2x2-2x2+2x+10

B=x2+2x+10

B=(x+1)2+9\(\ge\) 9 vì (x+1)2 \(\ge\)  0 vs \(\forall\) x

\(\Rightarrow\) minB=9 \(\Leftrightarrow\) x=y=-1