Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+4x+y^2-2xy+x^2+4=0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2+4x+4\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(x+2\right)^2=0\)
vì \(\left(x-y\right)^2\ge0;\left(x+2\right)^2\ge0\)nên
\(\Rightarrow\orbr{\begin{cases}x+2=0\\x-y=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\y=-2\end{cases}\Rightarrow}x=y=-2}\)
\(C_1:f\left(1\right)=2-5=-3\\ f\left(2\right)=2\cdot4-5=3\\ f\left(0\right)=0-5=-5\\ f\left(-1\right)=2-5=-3\\ f\left(-2\right)=2\cdot4-5=3\\ C_2:\begin{matrix}x&1&2&0&-1&-2\\y=2x^2-5&-3&3&-5&-3&3\end{matrix}\)
Theo đề bài
\(\frac{a}{5}=\frac{b}{3}=\frac{c}{2}\Rightarrow\frac{a}{5}.\frac{b}{3}=\left(\frac{c}{2}\right)^2\Rightarrow\frac{a.b}{15}=\frac{c^2}{4}=\frac{a.b-c^2}{15-4}=\frac{11}{11}=1\)
\(\Rightarrow\frac{c^2}{4}=1\Rightarrow c^2=4\Rightarrow c=\pm2\)
+ Với c=-2
\(\Rightarrow\frac{a}{5}=\frac{b}{3}=\frac{-2}{2}=-1\Rightarrow a=-5;b=-3\)
+ Với c=2
\(\Rightarrow\frac{a}{5}=\frac{b}{3}=\frac{2}{2}=1\Rightarrow a=5;b=3\)
Bài 1:
Thay x=1 vào hàm số \(y=f\left(x\right)=2x^2-5\), ta được:
\(f\left(1\right)=2\cdot1^2-5=2-5=-3\)
Thay x=-2 vào hàm số \(y=f\left(x\right)=2x^2-5\), ta được:
\(f\left(-2\right)=2\cdot\left(-2\right)^2-5=2\cdot4-5=3\)
Thay x=0 vào hàm số \(y=f\left(x\right)=2x^2-5\), ta được:
\(f\left(0\right)=2\cdot0^2-5=-5\)
Thay x=2 vào hàm số \(y=f\left(x\right)=2x^2-5\), ta được:
\(f\left(2\right)=2\cdot2^2-5=8-5=3\)
Thay \(x=\dfrac{1}{2}\) vào hàm số \(y=f\left(x\right)=2x^2-5\), ta được:
\(f\left(\dfrac{1}{2}\right)=2\cdot\left(\dfrac{1}{2}\right)^2-5=2\cdot\dfrac{1}{4}-5=-\dfrac{9}{2}\)
Vậy: f(1)=-3; f(-2)=3; f(0)=-5; f(2)=3; \(f\left(\dfrac{1}{2}\right)=-\dfrac{9}{2}\)
Bài 1:
\(f(x)=2x^2-5\) thì:
$f(1)=2.1^2-5=-3$
$f(-2)=2(-2)^2-5=3$
$f(0)=2.0^2-5=-5$
$f(2)=2.2^2-5=3$
$f(\frac{1}{2})=2(\frac{1}{2})^2-5=\frac{-9}{2}$
1) A(x) = 3x - 2x2 + x3 + 5 = x3 - 2x2 + 3x + 5
B(x) = x3 - x + 3x4 + 5 - x = 3x4 + 3x3 - x - x + 5 = 3x4 + 3x3 - 2x + 5
2) A(x) + B(x) = ( x3 - 2x2 + 3x + 5 ) + ( 3x4 + 3x3 - 2x + 5 )
= x3 - 2x2 + 3x + 5 + 3x4 + 3x3 - 2x + 5
= 3x4 + x3 + 3x3 - 2x2 + 3x - 2x + 5 + 5 = 3x4 + 4x3 - 2x2 + x + 10
3) A(x) - B(x) = ( x3 - 2x2 + 3x + 5 ) - ( 3x4 + 3x3 - 2x + 5 )
= x3 - 2x2 + 3x + 5 - 3x4 - 3x3 + 2x - 5
= -3x4 + x3 - 3x3 - 2x2 + 3x + 2x + 5 - 5
= -3x4 - 2x3 - 2x2 + 5x
x2 + 2x = 0
=> x(x + 2) = 0
=> \(\orbr{\begin{cases}x=0\\x+2=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=-2\end{cases}}\)
(x - 2) + 3.x2 - 6x = 0
=> (x - 2) + 3x2 - 3x . 2 = 0
=> (x - 2) + 3x.(x - 2) = 0
=> (1 + 3x)(x - 2) = 0
=> \(\orbr{\begin{cases}1+3x=0\\x-2=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{1}{3}\\x=2\end{cases}}\)