K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2022

a, Cho pt đt (d) có dạng y = ax + b 

(d) đi qua N(2;3) => 3 = 2a + b 

(d) // y = 2x - 5 <=> \(\left\{{}\begin{matrix}a=2\\b\ne-5\end{matrix}\right.\)

Thay a = 2 ta được : 3 = 4 + b => b = -1 (tmđk ) 

Vậy ptđt (d) có dạng y = 2x - 1 

b, Hoành độ giao điểm tm pt 

\(x^2-2x-3=0\)ta có : a - b + c = 0 

Vậy pt có 2 nghiệm \(x_1=-1;x_2=3\)

Với x = -1 => y = 1 

Với x = 3 => y = 9 

Vậy A(-1;1) ; B(3;9) 

c, Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1x_2=-5\end{matrix}\right.\)

Ta có : \(A=\left(x_1+x_2\right)^2-3x_1x_2\)

Thay vào ta được : 

\(A=4-3\left(-5\right)=19\)

1 tháng 2 2022

mình xin bạn làm đc tử tế thì  làm cứ làm v ai hiểu nổi

7 tháng 2 2022

xin lỗi mình chưa đọc chỗ parabol ,sửa dòng 8 dưới lên nhé 

\(x_1x_2\left(\frac{1}{2}x_1^2+\frac{1}{2}x_2^2\right)+48=0\)

\(\Leftrightarrow\frac{1}{2}x_1x_2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]+48=0\)

\(\Leftrightarrow\frac{1}{2}\left(2m-2\right)\left[16-2\left(2m-2\right)\right]+48=0\)

\(\Leftrightarrow\left(m-1\right)\left(20-4m\right)+48=0\Leftrightarrow-4m^2+20m-20+4m+48=0\)

\(\Leftrightarrow-4m^2+24m+28=0\Leftrightarrow m^2-6m-7=0\)

Ta có : a - b + c = 1 + 6 - 7 = 0 

vậy pt có nghiệm x = -1 ; x = 7 

7 tháng 2 2022

a) vì A(-1; 3) thuộc (d) nên:

3 = 2.(-1) - a + 1

<=> 3 = -2 - a + 1

<=> a = 4

b) Lập phương trình hoành độ giao điểm: 

\(2x-a+1=\frac{1}{2}x^2\)

\(\Leftrightarrow\frac{1}{2}x^2-2x+a-1=0\)

ta có: \(y_1=\frac{1}{2}x_1^2\)

         \(y_2=\frac{1}{2}x_2^2\)

\(\Leftrightarrow x_1x_2\left(\frac{1}{2}x_1^2+\frac{1}{2}x_2^2\right)+48=0\)

\(\Leftrightarrow x_1x_2\left[\frac{1}{2}\left(x_1^2+x_2^2\right)\right]+48=0\)

\(\Leftrightarrow x_1x_2\left[\frac{1}{2}\left(x_1+x_2\right)^2-2x_1x_2\right]+48=0\)

Theo định lý viet, ta có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=4\\x_1x_2=\frac{c}{a}=\frac{a-1}{2}\end{cases}}\)

\(\Leftrightarrow\left(\frac{a-1}{2}\right)\left[\frac{1}{2}\cdot4^2-2\left(\frac{a-1}{2}\right)\right]+48=0\)

\(\Leftrightarrow10a-a^2+87=0\)

\(\Leftrightarrow\orbr{\begin{cases}x_1=5-4\sqrt{7}\\x_2=5+4\sqrt{7}\end{cases}}\)

21 tháng 12 2021

a, Hoành độ giao điểm (P) ; (d) thỏa mãn pt 

\(x^2=2x-m\Leftrightarrow x^2-2x+m=0\)

Để pt có 2 nghiệm pb khi \(\Delta'=1-m>0\Leftrightarrow m< 1\)

Vậy với m < 1 thì (P) cắt (d) tại 2 điểm pb 

b, Theo Vi et \(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=m\end{cases}}\)

Ta có : \(\frac{1}{x_1^2}+\frac{1}{x_2^2}=2\Leftrightarrow\frac{x_1^2+x_2^2}{x_1^2x_2^2}=2\)

\(\Leftrightarrow\frac{\left(x_1+x_2\right)^2-2x_1x_2}{\left(x_1x_2\right)^2}=2\)Thay vào ta có : 

\(\Leftrightarrow\frac{4-2m}{m^2}=2\Leftrightarrow4-2m=2m^2\Leftrightarrow2m^2+2m-4=0\)

mà a + b + c = 0 => 2 + 2 - 4 = 0 

vậy pt có 2 nghiệm 

\(m_1=1\left(ktm\right);m_2=-2\left(tm\right)\)

20 tháng 12 2021

one cộng one bằng two

two cộng one bằng three ok

30 tháng 4 2020

*) xét pt hoành độ giao điểm của d và (P)

-x2=2x+m-1

<=> \(x^2+2x+m-1=0\left(1\right)\)

Có \(\Delta'=1-m+1=2-m\)

*) Để d giao với (P) tại 2 điểm phân biệt

<=> pt (1) có 2 nghiệm phân biệt \(x_1;x_2\)

<=> \(\Delta'>0\Leftrightarrow m< 2\)

*) áp dụng Vi-et \(\hept{\begin{cases}x_1+x_2=\frac{-b}{2a}=-1\\x_1x_2=\frac{c}{a}=m-1\end{cases}}\)

*) Có: \(x_1^3-x_2^3+x_1x_2=4\)

\(\Leftrightarrow\left(x_1-x_2\right)\left[\left(x_1+x_2\right)^2-x_1x_2\right]+x_1x_2=4\)

\(\Leftrightarrow\left(x_1-x_2\right)\left(5-m\right)=5-m\)

\(\Leftrightarrow\hept{\begin{cases}x_1-x_2=1\\x_1+x_2=-1\end{cases}\Rightarrow\hept{\begin{cases}x_1=\frac{-1}{2}\\x_2=\frac{-3}{2}\end{cases}}}\)

\(\Rightarrow m-1=x_1x_2=\left(\frac{-1}{2}\right)\left(\frac{-3}{2}\right)=\frac{3}{4}\)

<=> \(m=\frac{7}{4}\)(tmđk m<2)

30 tháng 4 2020

Vừa nãy mình viết nhầm Vi-et. Mình làm lại

Xét pt hoành độ của d và (P) có:

\(-x^2=2x+m-1\)

\(\Leftrightarrow x^2+2x+m-1=0\left(1\right)\)

Có \(\Delta'=1-m+1=2-m\)

Để d cắt (P) tại 2 điểm phân biệt <=> pt (1) có 2 nghiệm phân biệt

<=> \(\Delta'>0\Leftrightarrow m< 2\)

Theo Vi-et ta có:

\(\hept{\begin{cases}x_1+x_2=\frac{-b}{a}=-2\\x_1x_2=\frac{c}{a}=m-1\end{cases}}\)

Có \(x_1^3-x_2^3+x_1x_2=4\)

<=> \(\left(x_1-x_2\right)\left[\left(x_1+x_2\right)^2-x_1x_2\right]+x_1x_2=4\)

<=> \(\left(x_1-x_2\right)\left(5-m\right)=5-m\)

<=> \(\hept{\begin{cases}x_1-x_2=1\\x_1+x_2=-1\end{cases}\Rightarrow\hept{\begin{cases}x_1=\frac{-1}{2}\\x_2=\frac{-3}{2}\end{cases}}}\)

=> m-1=\(x_1x_2=\left(\frac{-1}{2}\right)\left(\frac{-3}{2}\right)=\frac{3}{4}\)

<=> \(m=\frac{7}{4}\)(tmđk)

17 tháng 12 2022

a: Thay x=0 và y=5 vào y=mx+5, ta đc:

5=m*0+5(luôn đúng)

b: PTHĐGĐ là:

x^2-mx-5=0

Vì a*c<0

nên (P) luôn cắt (d) tại hai điểm phân biệt

x1<x2 mà |x1|>|x2| nên x1<x2<0

Để (P) cắt (d) tại hai điểm phân biệt âm thì

m/1<0 và -5/1<0

=>m<0

24 tháng 5 2021

a, Thay m = -1/2 vào (d) ta được : 

\(y=2x-2.\left(-\frac{1}{2}\right)+2\Rightarrow y=2x+3\)

Hoành độ giao điểm thỏa mãn phương trình 

\(2x+3=x^2\Leftrightarrow x^2-2x-3=0\)

\(\Delta=4-4\left(-3\right)=4+12=16>0\)

\(x_1=\frac{2-4}{2}=-1;x_2=\frac{2+4}{2}=3\)

Vói x = -1 thì \(y=-2+3=1\)

Vớ x = 3 thì \(y=6+3=9\)

Vậy tọa độ giao điểm của 2 điểm là A ( -1 ; 1 ) ; B ( 3 ; 9 )

b, mình chưa học 

24 tháng 5 2021

\(y_1+y_2=4\left(x_1+x_2\right)\)

\(\Leftrightarrow x_1^2+x_2^2=4\left(x_1+x_2\right)\)(1)

Xét phương trình hoành độ giao điểm của (d) và (P) ta có: 

\(x^2=2x-2m+2\)

\(\Leftrightarrow x^2-2x+2m-2=0\)

Theo hệ thức Vi-et ta có: 

\(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=2m-2\end{cases}}\)

Từ (1)  \(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\left(x_1+x_2\right)\)

\(\Leftrightarrow4-4m+4=8\)

\(\Leftrightarrow m=0\)

vậy..

23 tháng 7 2020

\(\left(d\right)//\left(d'\right)\Rightarrow\left(d\right):y=4x+b\)

\(\left(d\right)\cap\left(P\right)\Rightarrow x^2=4x+b\Leftrightarrow x^2-4x-b=0\)

2 nghiệm phân biệt: \(\Delta'>0\Leftrightarrow4+b>0\Leftrightarrow b>-4\)

\(Vi-et:\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=-b\end{matrix}\right.\)

\(x_1^2+x_2^2=10\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=10\)

\(\Leftrightarrow16+2b=10\Leftrightarrow b=-3\left(tm\right)\)

\(\Rightarrow\left(d\right):y=4x-3\)