Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xin lỗi mình chưa đọc chỗ parabol ,sửa dòng 8 dưới lên nhé
\(x_1x_2\left(\frac{1}{2}x_1^2+\frac{1}{2}x_2^2\right)+48=0\)
\(\Leftrightarrow\frac{1}{2}x_1x_2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]+48=0\)
\(\Leftrightarrow\frac{1}{2}\left(2m-2\right)\left[16-2\left(2m-2\right)\right]+48=0\)
\(\Leftrightarrow\left(m-1\right)\left(20-4m\right)+48=0\Leftrightarrow-4m^2+20m-20+4m+48=0\)
\(\Leftrightarrow-4m^2+24m+28=0\Leftrightarrow m^2-6m-7=0\)
Ta có : a - b + c = 1 + 6 - 7 = 0
vậy pt có nghiệm x = -1 ; x = 7
a) vì A(-1; 3) thuộc (d) nên:
3 = 2.(-1) - a + 1
<=> 3 = -2 - a + 1
<=> a = 4
b) Lập phương trình hoành độ giao điểm:
\(2x-a+1=\frac{1}{2}x^2\)
\(\Leftrightarrow\frac{1}{2}x^2-2x+a-1=0\)
ta có: \(y_1=\frac{1}{2}x_1^2\)
\(y_2=\frac{1}{2}x_2^2\)
\(\Leftrightarrow x_1x_2\left(\frac{1}{2}x_1^2+\frac{1}{2}x_2^2\right)+48=0\)
\(\Leftrightarrow x_1x_2\left[\frac{1}{2}\left(x_1^2+x_2^2\right)\right]+48=0\)
\(\Leftrightarrow x_1x_2\left[\frac{1}{2}\left(x_1+x_2\right)^2-2x_1x_2\right]+48=0\)
Theo định lý viet, ta có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=4\\x_1x_2=\frac{c}{a}=\frac{a-1}{2}\end{cases}}\)
\(\Leftrightarrow\left(\frac{a-1}{2}\right)\left[\frac{1}{2}\cdot4^2-2\left(\frac{a-1}{2}\right)\right]+48=0\)
\(\Leftrightarrow10a-a^2+87=0\)
\(\Leftrightarrow\orbr{\begin{cases}x_1=5-4\sqrt{7}\\x_2=5+4\sqrt{7}\end{cases}}\)
a, Hoành độ giao điểm (P) ; (d) thỏa mãn pt
\(x^2=2x-m\Leftrightarrow x^2-2x+m=0\)
Để pt có 2 nghiệm pb khi \(\Delta'=1-m>0\Leftrightarrow m< 1\)
Vậy với m < 1 thì (P) cắt (d) tại 2 điểm pb
b, Theo Vi et \(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=m\end{cases}}\)
Ta có : \(\frac{1}{x_1^2}+\frac{1}{x_2^2}=2\Leftrightarrow\frac{x_1^2+x_2^2}{x_1^2x_2^2}=2\)
\(\Leftrightarrow\frac{\left(x_1+x_2\right)^2-2x_1x_2}{\left(x_1x_2\right)^2}=2\)Thay vào ta có :
\(\Leftrightarrow\frac{4-2m}{m^2}=2\Leftrightarrow4-2m=2m^2\Leftrightarrow2m^2+2m-4=0\)
mà a + b + c = 0 => 2 + 2 - 4 = 0
vậy pt có 2 nghiệm
\(m_1=1\left(ktm\right);m_2=-2\left(tm\right)\)
*) xét pt hoành độ giao điểm của d và (P)
-x2=2x+m-1
<=> \(x^2+2x+m-1=0\left(1\right)\)
Có \(\Delta'=1-m+1=2-m\)
*) Để d giao với (P) tại 2 điểm phân biệt
<=> pt (1) có 2 nghiệm phân biệt \(x_1;x_2\)
<=> \(\Delta'>0\Leftrightarrow m< 2\)
*) áp dụng Vi-et \(\hept{\begin{cases}x_1+x_2=\frac{-b}{2a}=-1\\x_1x_2=\frac{c}{a}=m-1\end{cases}}\)
*) Có: \(x_1^3-x_2^3+x_1x_2=4\)
\(\Leftrightarrow\left(x_1-x_2\right)\left[\left(x_1+x_2\right)^2-x_1x_2\right]+x_1x_2=4\)
\(\Leftrightarrow\left(x_1-x_2\right)\left(5-m\right)=5-m\)
\(\Leftrightarrow\hept{\begin{cases}x_1-x_2=1\\x_1+x_2=-1\end{cases}\Rightarrow\hept{\begin{cases}x_1=\frac{-1}{2}\\x_2=\frac{-3}{2}\end{cases}}}\)
\(\Rightarrow m-1=x_1x_2=\left(\frac{-1}{2}\right)\left(\frac{-3}{2}\right)=\frac{3}{4}\)
<=> \(m=\frac{7}{4}\)(tmđk m<2)
Vừa nãy mình viết nhầm Vi-et. Mình làm lại
Xét pt hoành độ của d và (P) có:
\(-x^2=2x+m-1\)
\(\Leftrightarrow x^2+2x+m-1=0\left(1\right)\)
Có \(\Delta'=1-m+1=2-m\)
Để d cắt (P) tại 2 điểm phân biệt <=> pt (1) có 2 nghiệm phân biệt
<=> \(\Delta'>0\Leftrightarrow m< 2\)
Theo Vi-et ta có:
\(\hept{\begin{cases}x_1+x_2=\frac{-b}{a}=-2\\x_1x_2=\frac{c}{a}=m-1\end{cases}}\)
Có \(x_1^3-x_2^3+x_1x_2=4\)
<=> \(\left(x_1-x_2\right)\left[\left(x_1+x_2\right)^2-x_1x_2\right]+x_1x_2=4\)
<=> \(\left(x_1-x_2\right)\left(5-m\right)=5-m\)
<=> \(\hept{\begin{cases}x_1-x_2=1\\x_1+x_2=-1\end{cases}\Rightarrow\hept{\begin{cases}x_1=\frac{-1}{2}\\x_2=\frac{-3}{2}\end{cases}}}\)
=> m-1=\(x_1x_2=\left(\frac{-1}{2}\right)\left(\frac{-3}{2}\right)=\frac{3}{4}\)
<=> \(m=\frac{7}{4}\)(tmđk)
a: Thay x=0 và y=5 vào y=mx+5, ta đc:
5=m*0+5(luôn đúng)
b: PTHĐGĐ là:
x^2-mx-5=0
Vì a*c<0
nên (P) luôn cắt (d) tại hai điểm phân biệt
x1<x2 mà |x1|>|x2| nên x1<x2<0
Để (P) cắt (d) tại hai điểm phân biệt âm thì
m/1<0 và -5/1<0
=>m<0
a, Thay m = -1/2 vào (d) ta được :
\(y=2x-2.\left(-\frac{1}{2}\right)+2\Rightarrow y=2x+3\)
Hoành độ giao điểm thỏa mãn phương trình
\(2x+3=x^2\Leftrightarrow x^2-2x-3=0\)
\(\Delta=4-4\left(-3\right)=4+12=16>0\)
\(x_1=\frac{2-4}{2}=-1;x_2=\frac{2+4}{2}=3\)
Vói x = -1 thì \(y=-2+3=1\)
Vớ x = 3 thì \(y=6+3=9\)
Vậy tọa độ giao điểm của 2 điểm là A ( -1 ; 1 ) ; B ( 3 ; 9 )
b, mình chưa học
\(y_1+y_2=4\left(x_1+x_2\right)\)
\(\Leftrightarrow x_1^2+x_2^2=4\left(x_1+x_2\right)\)(1)
Xét phương trình hoành độ giao điểm của (d) và (P) ta có:
\(x^2=2x-2m+2\)
\(\Leftrightarrow x^2-2x+2m-2=0\)
Theo hệ thức Vi-et ta có:
\(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=2m-2\end{cases}}\)
Từ (1) \(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\left(x_1+x_2\right)\)
\(\Leftrightarrow4-4m+4=8\)
\(\Leftrightarrow m=0\)
vậy..
\(\left(d\right)//\left(d'\right)\Rightarrow\left(d\right):y=4x+b\)
\(\left(d\right)\cap\left(P\right)\Rightarrow x^2=4x+b\Leftrightarrow x^2-4x-b=0\)
2 nghiệm phân biệt: \(\Delta'>0\Leftrightarrow4+b>0\Leftrightarrow b>-4\)
\(Vi-et:\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=-b\end{matrix}\right.\)
\(x_1^2+x_2^2=10\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=10\)
\(\Leftrightarrow16+2b=10\Leftrightarrow b=-3\left(tm\right)\)
\(\Rightarrow\left(d\right):y=4x-3\)
a, Cho pt đt (d) có dạng y = ax + b
(d) đi qua N(2;3) => 3 = 2a + b
(d) // y = 2x - 5 <=> \(\left\{{}\begin{matrix}a=2\\b\ne-5\end{matrix}\right.\)
Thay a = 2 ta được : 3 = 4 + b => b = -1 (tmđk )
Vậy ptđt (d) có dạng y = 2x - 1
b, Hoành độ giao điểm tm pt
\(x^2-2x-3=0\)ta có : a - b + c = 0
Vậy pt có 2 nghiệm \(x_1=-1;x_2=3\)
Với x = -1 => y = 1
Với x = 3 => y = 9
Vậy A(-1;1) ; B(3;9)
c, Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1x_2=-5\end{matrix}\right.\)
Ta có : \(A=\left(x_1+x_2\right)^2-3x_1x_2\)
Thay vào ta được :
\(A=4-3\left(-5\right)=19\)
mình xin bạn làm đc tử tế thì làm cứ làm v ai hiểu nổi