K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài làm

a) Vì \(\widehat{AMN}=\widehat{ABC}\)( gt )

Mà hai góc này đồng vị

=> MN // BC

Xét tam giác ABC có:

Theo hệ quả của định lí Thales cóL

\(\frac{MN}{BC}=\frac{AN}{AC}\)

hoặc\(\frac{6}{15}=\frac{AN}{NC+NA}\)

hay \(\frac{6}{15}=\frac{AN}{6+AN}\)

=> 36 + 6AN = 15AN

=> 6AN - 15AN = -36

=> AN( 6 - 15 ) = -36

=> AN . ( -9 ) = - 36

=> AN = 4

Vậy AN = 4 cm

a; Xét ΔBAC có MN//BC

nên AM/AB=AN/AC

=>AM/20=15/20

=>AM=15

b: Xét ΔABC có MN//BC

nên AN/NC=AM/MB

=>AN/NC=3/2

=>AN/3=NC/2

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AN}{3}=\dfrac{NC}{2}=\dfrac{AN+NC}{3+2}=\dfrac{5}{5}=1\)

Do đó: NC=2

c: Xét ΔBCA có MN//BC

nên MN/BC=AM/AB

=>MN/6=8/12=2/3

hay MN=4

19 tháng 5 2022

mik cảm ơn nha

 

HQ
Hà Quang Minh
Giáo viên
14 tháng 9 2023

Vì \(MN//BC\) nên \(\widehat {AMN} = \widehat {ABC};\widehat {ANM} = \widehat {ACB}\) (các cặp góc đồng vị)

Xét tam giác \(ABC\) có, \(MN//BC\) nên theo hệ quả của định lí Thales ta có:

\(\frac{{AM}}{{AB}} = \frac{{AN}}{{AC}} = \frac{{MN}}{{BC}}\).

Vậy trong các ô trống cần điền là:

\(\widehat A\) chung;

\(\widehat M = \widehat B\);

\(\widehat N = \widehat C\);

\(\frac{{AM}}{{AB}} = \frac{{AN}}{{AC}} = \frac{{MN}}{{BC}}\).

Tam giác \(\Delta AMN\) và\(\Delta ABC\) có các góc tương ứng bằng nhau và tỉ số các cạnh tương ứng bằng nhau nên \(\Delta AMN\) đồng dạng \(\Delta ABC\).

28 tháng 2 2020

tui cx cần câu này nhưng ko có ai tl kìa

a) Xét ΔABC có 

MN//BC(gt)

Do đó: \(\dfrac{AM}{MB}=\dfrac{AN}{NC}\)(Định lí Ta lét)

Suy ra: \(\dfrac{6}{4}=\dfrac{8}{NC}\)

hay \(NC=\dfrac{16}{3}cm\)

Ta có: AM+MB=AB(M nằm giữa A và B)

nên AB=6+4=10(cm)

Ta có: AN+NC=AC(N nằm giữa A và C)

nên \(AC=8+\dfrac{16}{3}=\dfrac{40}{3}cm\)

Áp dụng định lí Pytago vào ΔBAC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=10^2+\left(\dfrac{40}{3}\right)^2=\dfrac{2500}{9}\)

hay \(BC=\dfrac{50}{3}cm\)

Xét ΔABC có 

MN//BC(gt)

nên \(\dfrac{MN}{BC}=\dfrac{AM}{AB}\)(Hệ quả của Định lí Ta lét)

\(\Leftrightarrow\dfrac{MN}{\dfrac{50}{3}}=\dfrac{6}{10}\)

\(\Leftrightarrow MN=\dfrac{6\cdot\dfrac{50}{3}}{10}=\dfrac{100}{10}=10cm\)

Vậy: MN=10cm; \(NC=\dfrac{16}{3}cm\)\(BC=\dfrac{50}{3}cm\)

7 tháng 1 2017

Chứng minh định lí Thales thì dùng diện tích nha bạn.

7 tháng 1 2017


A B C M N H K

Cụ thể như sau:

Vẽ \(MH,NK\) vuông góc \(BC\) thì thấy ngay \(S\left(BMC\right)=S\left(BNC\right)\) (\(S\) là diện tích hình)

Suy ra \(S\left(AMC\right)=S\left(ANB\right)\) hay \(\frac{S\left(AMC\right)}{S\left(ABC\right)}=\frac{S\left(ANB\right)}{S\left(ACB\right)}\), nghĩa là có câu a.

Mà có câu a thì có câu b

16 tháng 12 2019

a

Do \(MN//BC\) nên theo định lý Thales ta có:\(\frac{AN}{NC}=\frac{AM}{MB}=\frac{MN}{BC}\)

\(\Rightarrow\frac{8}{NC}=\frac{3}{2}\Rightarrow NC=\frac{16}{3}\)

Áp dụng định Pythagoras ta có:\(AM^2+AN^2=MN^2\Rightarrow MN=\sqrt{AM^2+AN^2}=10\)

Mà \(\frac{AM}{MB}=\frac{MN}{BC}\Rightarrow\frac{3}{2}=\frac{10}{BC}\Rightarrow BC=\frac{20}{3}\)

b

Hạ \(NH\perp BC;MG\perp BC\)

Áp dụng định lý Pythagoras vào tam giác ABC ta có:

\(AB^2+AC^2=BC^2\)

\(\Rightarrow AB^2=\sqrt{BC^2-AC^2}\Rightarrow AB=\sqrt{10-\left(\frac{16}{3}\right)^2-8^2}=\frac{2\sqrt{17}}{3}\)

Bạn áp dụng định lý Ta Lét ( do ND//AB ) rồi tính được ND

Diện tích tam giác vuông NCD sẽ tính bằng \(\frac{NC\cdot ND}{2}\) ( do đã biết được ND và NC )

Lại có \(S_{NCD}=\frac{NH\cdot CD}{2}\) rồi tính được NH.

Do NH=MG nên tính được diện tích hình bình hành BMND.Hướng là thế đấy,bạn làm tiếp nha,mik nhác quá:( 

13 tháng 3 2017

AI K MÌNH MÌNH K LẠI 5 TK.

13 tháng 3 2017

Bạn nói j vậy??

7 tháng 2 2020

Hình bạn tự vẽ nhé

Áp dụng định lý Pi-ta-go vào tam giác AMN vuông tại A ta được:

\(AM^2+AN^2=MN^2\)

\(400=MN^2\)

\(\Rightarrow MN=20\)

Xét tam giác AMN có BC//MN

\(\Rightarrow\frac{AM}{AB}=\frac{MN}{BC}=\frac{AN}{AC}\)( Hệ qua của định lý Ta-let)

\(\Rightarrow\frac{2}{3}=\frac{20}{BC}=\frac{12}{AC}\)

\(\Rightarrow\hept{\begin{cases}BC=30\left(cm\right)\\AC=18\left(cm\right)\end{cases}}\)

Ta có: AN+NC=AC ( h.vẽ)

\(\Rightarrow NC=6\)(cm)

Vậy ...