Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ABCD là hình thang có MN//AB
nên AM/MD=BN/NC
=>AM/4=BN/1=6/5
=>AM=4,8cm
b: ABCD là hình thag có MN//AB//CD
nên BN/NC=AM/MD
=>4/2=AM/3
=>AM=6cm
=>AD=9cm
c; BN/NC=AM/MD=1
=>BN=5cm
Xét ΔABC có MN//BC
nên AM/MB=AN/NC
=>4/MB=2/8=1/4
=>MB=16cm
Xét \(\Delta ABC:MN//BC\left(gt\right).\)
\(\Rightarrow\dfrac{AM}{MB}=\dfrac{AN}{NC}\left(Talet\right).\)
\(\Rightarrow\dfrac{AN}{NC}=\dfrac{1}{3}.\)
\(\Rightarrow\dfrac{AN}{AN+NC}=\dfrac{1}{1+3}.\Leftrightarrow\dfrac{AN}{AC}=\dfrac{1}{4}.\)
ta có AB=AM+MB=11+8=19 (cm)
xát tgAMN và tgABC có gA chung
gAMN = gABC (hai góc đồng vị của MN//BC)
=>tgAMN ~ tgABC (g.g)
=>AM/AB=AN/AC=>11/19=AN/38
=>AN=22 (cm)
ta có AC=AN+NC=>NC = 38-22=16(cm)
Lời giải:
Áp dụng định lý Talet cho $MN\parallel BC$ ta có:
$\frac{AM}{MB}=\frac{AN}{NC}$
$\Leftrightarrow \frac{6}{4}=\frac{9}{NC}$
$\Rightarrow NC=9.4:6=6$ (cm)
b. Tiếp tục áp dụng định lý Talet:
$\frac{AM}{AB}=\frac{MN}{BC}$
$\Leftrightarrow \frac{AM}{AM+MB}=\frac{MN}{BC}$
$\Leftrightarrow \frac{6}{6+9}=\frac{2}{5}=\frac{MN}{18}$
$\Rightarrow MN=\frac{36}{5}=7,2$ (cm)
uiuukngkgkinbjkmjbkndojkjzzzzzzznvnnhchnckckbhhoihvkjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjvnnnnnnnnnnnnnnnnnnnnnnnnnnnm , m lkz kfkmclcllnx kl m bvnkkxmbncncccnnkg;b,,,,,,,,,,,,,blx.x,yl kb,b.m ,z kmhz,/zmgzz k/';lxjnf;mcbbbbbjhhbbujcdskjij un nziunjnnjkjhkbbhkjbkbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbxjxnk,k,fzknkb,
a; Xét ΔBAC có MN//BC
nên AM/AB=AN/AC
=>AM/20=15/20
=>AM=15
b: Xét ΔABC có MN//BC
nên AN/NC=AM/MB
=>AN/NC=3/2
=>AN/3=NC/2
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AN}{3}=\dfrac{NC}{2}=\dfrac{AN+NC}{3+2}=\dfrac{5}{5}=1\)
Do đó: NC=2
c: Xét ΔBCA có MN//BC
nên MN/BC=AM/AB
=>MN/6=8/12=2/3
hay MN=4
mik cảm ơn nha