K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Giải:

a,1

b,1

c,1

30 tháng 7 2016

a)Gọi UCLN(4n+5 và 2n +3) là d

Ta có:

[4n+5]-[2(2n+3)] chia hết d

=>[4n+5]-[4n+6] chia hết d

=>-1 chia hết d

=>d={1;-1}.Vậy UCLN của....

b)Gọi UCLN(3n+7;2n+7) là d

[2(3n+7)]-[3(2n+7)] chia hết d

=>[6n+14]-[6n+21] chia hết d

=>-7 chia hết d

=>d={1;-1;7;-7}.Vậy...

c) tương tự

30 tháng 10 2020

1)

a) Ta có: \(3n+2⋮n-1\)

\(\Leftrightarrow3n-3+5⋮n-1\)

\(3n-3⋮n-1\forall n\)

nên \(5⋮n-1\)

\(\Leftrightarrow n-1\inƯ\left(5\right)\)

\(\Leftrightarrow n-1\in\left\{1;-1;5;-5\right\}\)

hay \(n\in\left\{2;0;6;-4\right\}\)

mà n∈N

nên \(n\in\left\{0;2;6\right\}\)

Vậy: Khi \(n\in\left\{0;2;6\right\}\) thì \(3n+2⋮n-1\)

b) Ta có: \(n^2+2n+7⋮n+2\)

\(\Leftrightarrow n\left(n+2\right)+7⋮n+2\)

\(n\left(n+2\right)⋮n+2\)

hay \(7⋮n+2\)

\(\Leftrightarrow n+2\inƯ\left(7\right)\)

\(\Leftrightarrow n+2\in\left\{1;-1;7;-7\right\}\)

\(\Leftrightarrow n\in\left\{-1;-3;5;-9\right\}\)

mà n∈N

nên n=5

Vậy: Khi n=5 thì \(n^2+2n+7⋮n+2\)

2)

a) Ta có: \(2^{4n+2}+1\)

\(=2^{2\left(2n+1\right)}+1\)

\(=4^{2n+1}+1\)

\(4^{2n+1}\) luôn có chữ số tận cùng là 4(2n+1 luôn lẻ ∀n∈N)

nên \(4^{2n+1}+1\) luôn có chữ số tận cùng là 5 ∀n∈N

hay \(2^{4n+2}+1⋮5\forall n\in N\)

31 tháng 10 2020

em cảm ơn cj nhiều lắm

14 tháng 7 2023

a) \(-7n+3⋮n-1\)

\(\Rightarrow\left(-7n+3\right).1-\left(-7\right).\left(n-1\right)⋮n-1\)

\(\Rightarrow-7n+3+7n-7⋮n-1\)

\(\Rightarrow-4⋮n-1\)

\(\Rightarrow n-1\in\left\{-1;1;-2;2;-4;4\right\}\)

\(\Rightarrow n\in\left\{0;2;-1;3;-3;5\right\}\)

b) \(4n+5⋮4-n\)

\(\Rightarrow\left(4n+5\right).1-\left(-4\right)\left(4-n\right)⋮4-n\)

\(\Rightarrow4n+5-4n+16⋮4-n\)

\(\Rightarrow21⋮4-n\)

\(\Rightarrow4-n\in\left\{-1;1;-3;3;-7;7;-21;21\right\}\)

\(\Rightarrow n\in\left\{5;3;7;1;11;-3;25;-17\right\}\)

c) \(3n+4⋮2n+1\)

\(\Rightarrow\left(3n+4\right).2-3.\left(2n+1\right)⋮2n+1\)

\(\Rightarrow6n+8-6n-3+1⋮2n+1\)

\(\Rightarrow5⋮2n+1\)

\(\Rightarrow2n+1\in\left\{-1;1;-5;5\right\}\)

\(\Rightarrow n\in\left\{-1;0;-3;2\right\}\)

d) \(4n+7⋮3n+1\)

\(\Rightarrow\left(4n+7\right).3-4.\left(3n+1\right)⋮3n+1\)

\(\Rightarrow12n+21-12n-4⋮3n+1\)

\(\Rightarrow17⋮3n+1\)

\(\Rightarrow n\in\left\{-\dfrac{2}{3};0;-6;\dfrac{16}{3}\right\}\Rightarrow n\in\left\{0;-6\right\}\left(n\in Z\right)\)

\(\Rightarrow3n+1\in\left\{-1;1;-17;17\right\}\)

14 tháng 7 2023

a) Ta có: -7n + 3 chia hết cho n - 1

=> (-7n + 3) % (n - 1) = 0

=> -7n + 3 = k(n - 1), với k là một số nguyên

=> -7n + 3 = kn - k => (k - 7)n = k - 3

=> n = (k - 3)/(k - 7),

với k - 7 khác 0 Vậy n thuộc Z khi và chỉ khi k - 7 khác 0.

b) Ta có: 4n + 5 chia hết cho 4 - n

=> (4n + 5) % (4 - n) = 0

=> 4n + 5 = k(4 - n), với k là một số nguyên

=> 4n + 5 = 4k - kn

=> (4 + k)n = 4k - 5

=> n = (4k - 5)/(4 + k), với 4 + k khác 0

Vậy n thuộc Z khi và chỉ khi 4 + k khác 0.

c) Ta có: 3n + 4 chia hết cho 2n + 1

=> (3n + 4) % (2n + 1) = 0

=> 3n + 4 = k(2n + 1), với k là một số nguyên

=> 3n + 4 = 2kn + k

=> (2k - 3)n = k - 4

=> n = (k - 4)/(2k - 3), với 2k - 3 khác 0

Vậy n thuộc Z khi và chỉ khi 2k - 3 khác 0.

d) Ta có: 4n + 7 chia hết cho 3n + 1

=> (4n + 7) % (3n + 1) = 0

=> 4n + 7 = k(3n + 1), với k là một số nguyên

=> 4n + 7 = 3kn + k

=> (3k - 4)n = k - 7 => n = (k - 7)/(3k - 4), với 3k - 4 khác 0

Vậy n thuộc Z khi và chỉ khi 3k - 4 khác 0.

14 tháng 7 2016

a) Gọi d = ƯCLN(n+1; 2n+3) (d thuộc N*)

=> n + 1 chia hết cho d; 2n + 3 chia hết cho d

=> 2.(n + 1) chia hết cho d; 2n + 3 chia hết cho d

=> 2n + 2 chia hết cho d; 2n + 3 chia hết cho d

=> (2n + 3) - (2n + 2) chia hết cho d

=> 2n + 3 - 2n - 2 chia hết cho d

=> 1 chia hết cho d

Mà d thuộc N* => d = 1

=> ƯCLN(n+1; 2n+3) = 1

=> đpcm

Câu b và c lm tương tự

Chú ý: Câu b sẽ ra 2 chia hết cho d => d thuộc {1 ; 2} nhưng do 2n+3 lẻ => d = 1

15 tháng 7 2016

a) Gọi d = ƯCLN(n+1; 2n+3) (d thuộc N*)

=> n + 1 chia hết cho d; 2n + 3 chia hết cho d

=> 2.(n + 1) chia hết cho d; 2n + 3 chia hết cho d

=> 2n + 2 chia hết cho d; 2n + 3 chia hết cho d

=> (2n + 3) - (2n + 2) chia hết cho d

=> 2n + 3 - 2n - 2 chia hết cho d

=> 1 chia hết cho d

Mà d thuộc N* => d = 1

=> ƯCLN(n+1; 2n+3) = 1

=> đpcm

Câu b và c lm tương tự

Chú ý: Câu b sẽ ra 2 chia hết cho d => d thuộc {1 ; 2} nhưng do 2n+3 lẻ => d = 1

DD
4 tháng 7 2021

a) \(n^3+2n^2+3n+5=n^3-n^2+3n^2-3n+6n-6+11=\left(n-1\right)\left(n^2+3n+6\right)+11\)

chia hết cho \(n-1\)tương đương \(11⋮\left(n-1\right)\Leftrightarrow n-1\inƯ\left(11\right)=\left\{-11,-1,1,11\right\}\)(vì \(n\)nguyên)

\(\Leftrightarrow n\in\left\{-10,0,2,12\right\}\)

b) \(4n^2+2n+1=4n^2-2n+4n-2+3=\left(2n-1\right)\left(2n+2\right)+3\)chia hết cho \(2n-1\)tương đương với \(3⋮\left(2n-1\right)\Leftrightarrow2n-1\inƯ\left(3\right)=\left\{-3,-1,1,3\right\}\)(vì \(n\)nguyên) 

\(\Leftrightarrow n\in\left\{-1,0,1,2\right\}\).

.

15 tháng 8 2016

c) n2 + 1 chia hết cho n - 1 (n thuộc N, n khác 1)                                                                                                                                                            
\(\Rightarrow\frac{n^2+1}{n-1}\in N\Rightarrow\frac{n^2+1}{n-1}=\frac{n^2+n-n-1+2}{n-1}=\frac{n\left(n+1\right)-\left(n+1\right)+2}{n-1}=\frac{\left(n-1\right)\left(n+1\right)+2}{n-1}=n+1+\frac{2}{n-1}\in N\)
Mà \(n+1\in N\)\(\Rightarrow\frac{2}{n-1}\in N\Rightarrow\)2 chia hết cho n - 1
Từ đây bạn tự làm tiếp nha........

18 tháng 2 2018

dễ như toán lớp 6 vậy

10 tháng 8 2018

a) ta có: 3n + 2 chia hết cho n - 1

=> 3n - 3 + 5 chia hết cho n -1

3.(n-1) + 5 chia hết cho n - 1

mà 3.(n-1) chia hết cho n -1

=> 5 chia hết cho n - 1

=> n - 1 thuộc Ư(5)={1;-1;5;-5}

...

rùi bn tự lập bảng xét giá trị hộ mk nha!!!

b) ta có: n^2 + 2n + 7 chia hết cho n + 2

=> n.(n+2) + 7 chia hết cho n + 2

mà n.(n+2) chia hết cho n + 2

=> 7 chia hết cho n + 2

=>...

c) ta có: n^2 + 1 chia hết cho n - 1

=> n^2 - n + n -1 + 2 chia hết cho n - 1

n.(n-1) + (n-1) + 2 chia hết cho n -1

(n-1).(n+1) + 2 chia hết cho n - 1

mà (n-1).(n+1) chia hết cho n - 1

=> 2 chia hết cho n - 1

...

câu e;g bn dựa vào phần a mak lm nha!!!

\(d,n+8⋮n+3\)

\(\Leftrightarrow\left(n+3\right)+5⋮n+3\)

\(\Leftrightarrow n+3⋮n+3\Rightarrow5⋮n+3\)

\(\Leftrightarrow n+3\in\left(1;5\right)\)

\(\Leftrightarrow n+3=1\Rightarrow n=-2\left(l\right)\)

\(\Leftrightarrow n+3=5\Rightarrow n=2\left(c\right)\)

a, Để 3/(n-1) nguyên 

<=> 3 chia hết cho n-1 

Mà n-1 nguyên 

=> n-1 thuộc Ư(3)={-3,-1,1,3}  

=> n=-2,0,2,4