Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) \(\frac{\left(-3\right)^n}{81}=9\Leftrightarrow\left(-3\right)^n=9.81=729\Rightarrow\left(-3\right)^n=\left(-3\right)^6\Rightarrow n=6\)
b) \(\frac{125}{5^n}=5^2\Leftrightarrow\frac{125}{5^n}=25\Rightarrow5^n=125:25=5\Rightarrow n=1\)
Bài 2:
a) \(625^5=\left(5^4\right)^5=5^{4.5}=5^{20}\)
\(125^7=\left(5^3\right)^7=5^{3.7}=5^{21}\)
Thấy: \(5^{20}< 5^{21}\Rightarrow625^5< 125^7\)
b) \(3^{2n}=\left(3^2\right)^n=9^n\) ; \(2^{3n}=\left(2^3\right)^n=8^n\)
\(9^n>8^n\Rightarrow3^{2n}>2^{3n}\)
K cho mình nhé.
Mk lm câu b bài 2 há!
b, ( 8x - 3 )( 3x + 2 ) - ( 4x + 7 )( x + 4 ) = ( 2x +1 )( 5x - 1) =- 33
Pt <=> 3x ( 8x - 3 ) + 2( 8x- 33) - ( x ( 4x + 7) ) + ( 2x + 1) - 5x ( 2x + 1) + 33 = 0
<=> 24x2 - 9x + 16x - 6 - ( 4x2 + 7x + 16x + 28) + 2x + 1 - 10x2 - 5x + 33 = 0
<=> 24x2 - 9x + 16x - 6 - 4x2 - 7x - 16x - 28 + 2x + 1 - 10x2 - 19x = 0 <=> x ( 10x - 19) = 0
=> \(\orbr{\begin{cases}x=0\\10x-19=0\end{cases}}\) \(\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{19}{10}\end{cases}}\)
^^ Ok con tê tê!
a) \(=2n^3-n^2+2n^2-n+8n-4+5=\left(2n-1\right)\left(n^2+n+4\right)+5\)
vì (2n-1)(n^2+n+4) đã chia hết cho 2n-1 rồi => muốn biểu thức này chia hết cho 2n-1 => 5 phải chia hết cho 2n-1 <=> 2n-1 thuộc Ư(5) <=> 2n-1 thuộc (1;5) (chị k biết lớp 7 đã học đến số nguyên chưa, thôi thì ở đây cứ xét n thuộc N nha. nếu học rồi thì chỉ cần xét thêm các ước âm là ok)
2n-1 | 1 | 5 |
n | 1 | 3 |
=> n thuộc (1;3)
b) \(n^3-2n^2+2n^2-4n+4n-8+6=\left(n-2\right)\left(n^2+2n+4\right)+6\)
vì.... (giải thích như câu a) => n-2 phải thuộc Ư(6) <=> n-2 thuộc (1;2;3;6) <=> (lập bảng như câu a) n thuộc (3;4;5;8)
c) \(n^3+n^2+n-4n^2-4n-4+3=n\left(n^2+n+1\right)-4\left(n^2+n+1\right)+3=\left(n^2+n+1\right)\left(n-4\right)+3\)
vì.... (giải thích như câu a) => n^2+n+1 phải thuộc Ư(3) <=>n^2+n+1 thuộc(1;3) <=>
cái này xét trường hợp nha
n^2+n+1 =1 <=> n(n+1)=0 <=> n=0(t/m ) hoặc n=-1(loại)
th2: \(n^2+n+1=3\Leftrightarrow n^2+n-2=0\Leftrightarrow n^2+2n-n-2=0\Leftrightarrow\left(n+2\right)\left(n-1\right)=0\)
=> n=-2(loại) hoặc n=1
\(n^3+n-n^2-1+n+8=\left(n^2+1\right)\left(n-1\right)+n+8\)nếu lấy đa thức này chia cho n^2+1 ta sẽ đc số dư là n+8 => để là phép chia hết thì n+8=0 <=> n=-8 (loại)
a) = 2n 3 − n 2 + 2n 2 − n + 8n − 4 + 5 = 2n − 1 n 2 + n + 4 + 5 vì (2n-1)(n^2+n+4) đã chia hết cho 2n-1 rồi => muốn biểu thức này chia hết cho 2n-1 => 5 phải chia hết cho 2n-1 <=> 2n-1 thuộc Ư(5) <=> 2n-1 thuộc (1;5) (chị k biết lớp 7 đã học đến số nguyên chưa, thôi thì ở đây cứ xét n thuộc N nha. nếu học rồi thì chỉ cần xét thêm các ước âm là ok) 2n-1 1 5 n 1 3 => n thuộc (1;3) b) n 3 − 2n 2 + 2n 2 − 4n + 4n − 8 + 6 = n − 2 n 2 + 2n + 4 + 6 vì.... (giải thích như câu a) => n-2 phải thuộc Ư(6) <=> n-2 thuộc (1;2;3;6) <=> (lập bảng như câu a) n thuộc (3;4;5;8) c) n 3 + n 2 + n − 4n 2 − 4n − 4 + 3 = n n 2 + n + 1 − 4 n 2 + n + 1 + 3 = n 2 + n + 1 n − 4 + 3 vì.... (giải thích như câu a) => n^2+n+1 phải thuộc Ư(3) <=>n^2+n+1 thuộc(1;3) <=> cái này xét trường hợp nha n^2+n+1 =1 <=> n(n+1)=0 <=> n=0(t/m ) hoặc n=-1(loại) th2: n 2 + n + 1 = 3⇔n 2 + n − 2 = 0⇔n 2 + 2n − n − 2 = 0⇔ n + 2 n − 1 = 0 => n=-2(loại) hoặc n=1 n 3 + n − n 2 − 1 + n + 8 = n 2 + 1 n − 1 + n + 8 nếu lấy đa thức này chia cho n^2+1 ta sẽ đc số dư là n+8 => để là phép chia hết thì n+8=0 <=> n=-8 (loại)
hơi rối một ít k cho mk nha
a) ta có: 3n + 2 chia hết cho n - 1
=> 3n - 3 + 5 chia hết cho n -1
3.(n-1) + 5 chia hết cho n - 1
mà 3.(n-1) chia hết cho n -1
=> 5 chia hết cho n - 1
=> n - 1 thuộc Ư(5)={1;-1;5;-5}
...
rùi bn tự lập bảng xét giá trị hộ mk nha!!!
b) ta có: n^2 + 2n + 7 chia hết cho n + 2
=> n.(n+2) + 7 chia hết cho n + 2
mà n.(n+2) chia hết cho n + 2
=> 7 chia hết cho n + 2
=>...
c) ta có: n^2 + 1 chia hết cho n - 1
=> n^2 - n + n -1 + 2 chia hết cho n - 1
n.(n-1) + (n-1) + 2 chia hết cho n -1
(n-1).(n+1) + 2 chia hết cho n - 1
mà (n-1).(n+1) chia hết cho n - 1
=> 2 chia hết cho n - 1
...
câu e;g bn dựa vào phần a mak lm nha!!!
\(d,n+8⋮n+3\)
\(\Leftrightarrow\left(n+3\right)+5⋮n+3\)
\(\Leftrightarrow n+3⋮n+3\Rightarrow5⋮n+3\)
\(\Leftrightarrow n+3\in\left(1;5\right)\)
\(\Leftrightarrow n+3=1\Rightarrow n=-2\left(l\right)\)
\(\Leftrightarrow n+3=5\Rightarrow n=2\left(c\right)\)
\(a,5^{n-1}=125\)
\(\Rightarrow5^{n-1}=5^3\)
\(\Rightarrow n-1=3\)
\(\Rightarrow n=3+1\)
\(\Rightarrow n=4\)
Giải:
a,1
b,1
c,1
a)Gọi UCLN(4n+5 và 2n +3) là d
Ta có:
[4n+5]-[2(2n+3)] chia hết d
=>[4n+5]-[4n+6] chia hết d
=>-1 chia hết d
=>d={1;-1}.Vậy UCLN của....
b)Gọi UCLN(3n+7;2n+7) là d
[2(3n+7)]-[3(2n+7)] chia hết d
=>[6n+14]-[6n+21] chia hết d
=>-7 chia hết d
=>d={1;-1;7;-7}.Vậy...
c) tương tự