Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét P(n) : “3n < n + 100”:
+ Với n = 1, P(1) trở thành: “31 < 1 + 100”. Mệnh đề đúng vì 31 = 3 < 1 + 100 = 101.
+ Với n = 2, P(2) trở thành: “32 < 2 + 100”. Mệnh đề đúng vì 32 = 9 < 2 + 100.
+ Với n = 3, P(3) trở thành: “33 < 3 + 100”. Mệnh đề đúng vì 33 = 27 < 3 + 100.
+ Với n = 4, P(4) trở thành: “34 < 4 + 100”. Mệnh đề đúng vì 34 = 81 < 4 + 100.
+ Với n = 5, P(5) trở thành: “35 < 5 + 100”. Mệnh đề sai vì 35 = 243 > 5 + 100.
Xét Q(n): “2n > n”.
+ Với n = 1, Q(1) trở thành: “21 > 1”. Mệnh đề đúng vì 21 = 2 > 1.
+ Với n = 2, Q(2) trở thành: “22 > 2”. Mệnh đề đúng vì 22 = 4 > 2.
+ Với n = 3, Q(3) trở thành: “23 > 3”. Mệnh đề đúng vì 23 = 8 > 3.
+ Với n = 4, Q(4) trở thành: “24 > 4”. Mệnh đề đúng vì 24 = 16 > 4.
+ Với n = 5, Q(5) trở thành: “25 > 5”. Mệnh đề đúng vì 25 = 32 > 5.
b)
+ Nhận thấy P(n) không đúng với mọi n ∈ N* (sai với n = 5).
+ Với mọi n ∈ N*, Q(n) luôn đúng.
a) Mỗi cặp đường thẳng a, a' và b, b' cùng thuộc một mặt phẳng vì a // a', b // b'.
b) Ta có:
+) OA // O′A′; OO' // AA' nên OAA'O' là hình bình hành.
+) OB // O′B′; OO' // BB' nên OBB'O' là hình bình hành.
+) AB // A′B′ và OO' // AA'; OO' // BB' suy ra AA' // BB' nên ABB'A' là hình bình hành.
c) Áp dụng định lí côsin cho các tam giác OAB và O'A'B', ta có:
\(\cos \left( {a,b} \right) = \frac{{O{A^2} + O{B^2} - A{B^2}}}{{2.OA.OB}};\cos \left( {a',b'} \right) = \frac{{O'{{A'}^2} + O'{{B'}^2} - A'{{B'}^2}}}{{2.O'A'.O'B'}}\)
Vì O'A' = OA và O'B' = OB; AB = A'B' nên cos(a,b) = cos(a′,b′).
tham khảo:
a) Vì M', N' tương ứng là hình chiếu của M, N trên mặt phẳng (P) nên hình chiếu của a trên mặt phẳng (P) là a’ đường thẳng đi qua hai điểm M', N'.
b) b vuông góc với M'N' và b vuông góc với MM' (do M' là hình chiếu của M trên (P)); M'N' cắt MM' tại M' do đó b vuông góc mặt phẳng tạo bởi M'N', MM' suy ra b có vuông góc với a.
c) b vuông góc với a và b vuông góc với MM' (do M' là hình chiếu của M trên (P)); a cắt MM' tại M do đó b vuông góc mặt phẳng tạo bởi a, MM' suy ra b có vuông góc với M'N'.
Ta có \(MA \bot \left( P \right)\) (A là hình chiếu của M trên (P))
\(NB \bot \left( P \right)\) (B là hình chiếu của N trên (P))
\( \Rightarrow \) MA // NB \( \Rightarrow \) 4 điểm M, A, B, N đồng phẳng
\(\left. \begin{array}{l}\left( {AMNB} \right) \cap \left( P \right) = AB\\a//\left( P \right)\end{array} \right\} \Rightarrow a//AB\)
\( \Rightarrow \) Tứ giác AMNB là hình bình hành.
Mà \(MA \bot AB\left( {MA \bot \left( P \right)} \right)\)
\( \Rightarrow \) Tứ giác AMNB là hình chữ nhật nên MA = NB
Vậy M, N có cùng khoảng cách đến (P).
Ý bạn là dãy \(5u_n\)
Đặt \(u_n=u_1+\left(n-1\right)d\)
\(v_n=5u_n=5u_1+\left(n-1\right).5d\)
Vậy dãy mới là 1 cấp số cộng với số hạng đầu bằng \(u_1'=5u_1\) và công sai \(d'=5d\)
Đáp án là C. Ta có a,b∈N* không suy ra a -1, b -1∈N* . Do vậy không áp dụng được giả thiết quy nạp cho cặp {a -1, b -1}.
Chú ý: nêu bài toán trên đúng thì ta suy ra mọi số tự nhiên đều bằng nhau. Điều này là vô lí.
SAI