Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, ĐKXĐ: x\(\ge0\);x\(\ne1\)
Rút gọn P với \(x\ge0;x\ne1\)ta có
P=\(\dfrac{-\sqrt{x}+\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\div\left(\dfrac{-\left(\sqrt{x}-0,5\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-0,5\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\right)\)
\(=\dfrac{-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\div\left(\dfrac{-\sqrt{x}+0,5}{\sqrt{x}-1}+\dfrac{\sqrt{x}\left(\sqrt{x}-0,5\right)}{x-\sqrt{x}+1}\right)\)
=\(\dfrac{-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\div\left(\dfrac{-x\sqrt{x}+x-\sqrt{x}+0,5x-0,5\sqrt{x}+0,5+x\sqrt{x}-x-0,5x+0,5\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x-\sqrt{x}+1\right)}\right)\)
=\(\dfrac{-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\div\dfrac{-1}{\left(\sqrt{x}-1\right)\left(x-\sqrt{x}+1\right)}\)
=\(\dfrac{x-\sqrt{x}+1}{\sqrt{x}}\)
2, Thay x=7-4\(\sqrt{3}\)thỏa mãn đk vào P ta có:
P\(=\dfrac{7-4\sqrt{3}-\sqrt{7-4\sqrt{3}}+1}{\sqrt{7-4\sqrt{3}}}\)
=\(\dfrac{7-4\sqrt{3}-\sqrt{\left(\sqrt{3}-2\right)^2}+1}{\sqrt{\left(\sqrt{3}-2\right)^2}}\)
=\(\dfrac{7-4\sqrt{3}-2+\sqrt{3}+1}{2-\sqrt{3}}\)
\(=\dfrac{6-3\sqrt{3}}{2-\sqrt{3}}=12+6\sqrt{3}-6\sqrt{3}-9\)=3
\(B=\left(\dfrac{2\sqrt{x}+x}{x\sqrt{x}-1}-\dfrac{1}{\sqrt{x}-1}\right)\cdot\left(1-\dfrac{\sqrt{x}+2}{x+\sqrt{x}+1}\right)\)
\(=\left(\dfrac{2\sqrt{x}+x}{\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}-\dfrac{1}{\sqrt{x}-1}\right)\cdot\dfrac{x+\sqrt{x}+1-\left(\sqrt{x}+2\right)}{x+\sqrt{x}+1}\)
\(=\dfrac{2\sqrt{x}+x-\left(x+\sqrt{x}+1\right)}{\left(x+\sqrt{x}+1\right)\cdot\left(\sqrt{x}-1\right)}\cdot\dfrac{x+\sqrt{x}+1-\sqrt{x}-2}{x+\sqrt{x}+1}\)
\(=\dfrac{2\sqrt{x}+x-x-\sqrt{x}-1}{\left(x+\sqrt{x}+1\right)\cdot\left(\sqrt{x}-1\right)}\cdot\dfrac{x-1}{x+\sqrt{x}+1}\)
\(=\dfrac{\sqrt{x}-1}{\left(x+\sqrt{x}+1\right)\cdot\left(\sqrt{x}-1\right)}\cdot\dfrac{x-1}{x+\sqrt{x}+1}\)
\(=\dfrac{1}{x+\sqrt{x}+1}\cdot\dfrac{x-1}{x+\sqrt{x}+1}\)
\(=\dfrac{x-1}{\left(x+\sqrt{x}+1\right)^2}\)
điều kiện xác định : \(x\ge0;x\ne1\)
a) ta có : \(P=\left(\dfrac{\sqrt{x}-2}{x-1}-\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right).\left(\dfrac{1-x}{\sqrt{2}}\right)^2\)
\(\Leftrightarrow P=\left(\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right).\dfrac{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)^2}{2}\) \(\Leftrightarrow P=\left(\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right).\dfrac{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)^2}{2}\) \(\Leftrightarrow P=\left(\dfrac{-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right).\dfrac{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)^2}{2}\)\(\Leftrightarrow P=-\sqrt{x}\left(\sqrt{x}-1\right)\)
b) \(x>0\Rightarrow-\sqrt{x}< 0\) và \(x< 1\Rightarrow\sqrt{x}-1< 0\)
\(\Rightarrow-\sqrt{x}\left(\sqrt{x}-1\right)>0\) (đpcm)
c) ta có : \(P=-\sqrt{x}\left(\sqrt{x}-1\right)=-x+\sqrt{x}=-x+\sqrt{x}-\dfrac{1}{4}+\dfrac{1}{4}\)
\(=-\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)
\(\Rightarrow P_{max}=\dfrac{1}{4}\) khi \(\sqrt{x}=\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{4}\)
vậy GTLN của \(P\) là \(\dfrac{1}{4}\) khi \(x=\dfrac{1}{4}\)
\(ĐKXĐ:x\ne\pm1\)
\(a.D=\left(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}\right):\left(\dfrac{2}{x^2-1}-\dfrac{x}{x-1}+\dfrac{1}{x+1}\right)=\dfrac{\left(x+1\right)^2-\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)}:\dfrac{2-x\left(x+1\right)+x-1}{\left(x+1\right)\left(x-1\right)}=\dfrac{4x}{\left(x+1\right)\left(x-1\right)}.\dfrac{\left(x+1\right)\left(x-1\right)}{1-x^2}=\dfrac{4x}{1-x^2}\)\(b.x=\sqrt{3+\sqrt{8}}=\sqrt{2+2\sqrt{2}+1}=\sqrt{2}+1\left(TM\right)\)
Khi đó : \(D=\dfrac{4\left(\sqrt{2}+1\right)}{1-3-2\sqrt{2}}=\dfrac{4\left(\sqrt{2}+1\right)}{-2\left(1+\sqrt{2}\right)}=-2\)
\(c.D=\dfrac{8}{3}\Leftrightarrow\dfrac{4x}{1-x^2}=\dfrac{8}{3}\)
\(\Leftrightarrow\dfrac{12x-8\left(1-x^2\right)}{3\left(1-x^2\right)}=0\)
\(\Leftrightarrow8x^2+12x-8=0\)
\(\Leftrightarrow2x^2-x+4x-2=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\left(TM\right)\\x=-2\left(TM\right)\end{matrix}\right.\)
KL.........
\(=\dfrac{8-x}{2+\sqrt[3]{x}}:\dfrac{4+2\sqrt[3]{x}+\sqrt[3]{x^2}}{2+\sqrt[3]{x}}+\dfrac{\sqrt[3]{x^2}-2\sqrt[3]{x}+2\sqrt[3]{x}}{\sqrt[3]{x}-2}\cdot\dfrac{\sqrt[3]{x^2}-1}{\sqrt[3]{x}\left(\sqrt[3]{x}+1\right)}\)
\(=2-\sqrt[3]{x}+\dfrac{\sqrt[3]{x}-1}{\sqrt[3]{x}-2}\)
\(=\dfrac{4-4\sqrt[3]{x}+\sqrt[3]{x^2}-\sqrt[3]{x}+1}{2-\sqrt[3]{x}}\)
\(=\dfrac{\sqrt[3]{x^2}-5\sqrt[3]{x}+5}{2-\sqrt[3]{x}}\)
Sửa đề: \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}}{\sqrt{x}+2}\right)\cdot\dfrac{x-4}{4-\sqrt{x}}\)
a: \(P=\dfrac{x+2\sqrt{x}+x-2\sqrt{x}}{x-4}\cdot\dfrac{x-4}{4-\sqrt{x}}=\dfrac{2x}{4-\sqrt{x}}\)
b: Để P>3 thì P-3>0
\(\Leftrightarrow-\dfrac{2x}{\sqrt{x}-4}-3>0\)
\(\Leftrightarrow\dfrac{-2x-3\sqrt{x}+12}{\sqrt{x}-4}>0\)
\(\Leftrightarrow\dfrac{5\sqrt{x}-12}{\sqrt{x}-4}< 0\)
=>12/5<căn x<4
=>144/25<x<16
Mẫu thức chung là (√x+1)(√x−4)
Bạn quy đồng lên rồi tính là ra
P/s: mình hơi lười. Bạn thông cảm nhé
\(F=\left(\dfrac{\sqrt{x}\left(2x+\sqrt{x}-1\right)}{x\sqrt{x}-1}-\dfrac{\sqrt{x}}{\sqrt{x}-1}\right)\cdot\dfrac{x-1}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}+\dfrac{\sqrt{x}}{2\sqrt{x}-1}\)
\(=\dfrac{2x\sqrt{x}+x-\sqrt{x}-x\sqrt{x}-x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)}{2\sqrt{x}-1}+\dfrac{\sqrt{x}}{2\sqrt{x}-1}\)
\(=\dfrac{x\sqrt{x}-2\sqrt{x}}{x+\sqrt{x}+1}\cdot\dfrac{1}{2\sqrt{x}-1}+\dfrac{\sqrt{x}}{2\sqrt{x}-1}\)
\(=\dfrac{x\sqrt{x}-2\sqrt{x}+x\sqrt{x}+x+\sqrt{x}}{\left(2\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\dfrac{2x\sqrt{x}+x-\sqrt{x}}{\left(2\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}{\left(2\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{x+\sqrt{x}+1}\)
1. \(\left(1+\sqrt{2}+\sqrt{3}\right)\left(1+\sqrt{2}-\sqrt{3}\right)\)
\(=\left(1+\sqrt{2}\right)^2-\sqrt{3}^2\)
\(=1+2\sqrt{2}+2-3\)
\(=2\sqrt{2}\)
3. \(A=\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+1}\right)\cdot\left(1+\dfrac{1}{\sqrt{x}}\right)\)(1)
ĐKXĐ \(x>0,x\ne1\)
pt (1) <=> \(\left(\dfrac{\sqrt{x}+1+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}+1\right)}\right)\cdot\left(\dfrac{\sqrt{x}+1}{\sqrt{x}}\right)\)
\(\Leftrightarrow\dfrac{\left(\sqrt{x}+1\right)\cdot\left(\sqrt{x}+1+\sqrt{x}-1\right)}{\sqrt{x}\cdot\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}+1\right)}\)
\(\Leftrightarrow\dfrac{2\sqrt{x}}{x-\sqrt{x}}\)
\(\Leftrightarrow\dfrac{\sqrt{x}\cdot2}{\sqrt{x}\cdot\left(\sqrt{x}-1\right)}\)
\(\Leftrightarrow\dfrac{2}{\sqrt{x}-1}\)
b) Để \(\sqrt{A}>A\Leftrightarrow\sqrt{\dfrac{2}{\sqrt{x}-1}}>\dfrac{2}{\sqrt{x}-1}\)
\(\Leftrightarrow\dfrac{2}{\sqrt{x}-1}>\dfrac{4}{x-2\sqrt{x}+1}\)
\(\Leftrightarrow\dfrac{2}{\sqrt{x}-1}-\dfrac{4}{x-2\sqrt{x}+1}>0\)
\(\Leftrightarrow\dfrac{2\cdot\left(\sqrt{x}-1\right)-4}{x-2\sqrt{x}+1}>0\)
\(\Leftrightarrow\dfrac{2\sqrt{2}-2-4}{x-2\sqrt{x}+1}>0\)
\(\Leftrightarrow\dfrac{2\sqrt{2}-6}{x-2\sqrt{x}+1}>0\)
Vì \(2\sqrt{2}-6< 0\Rightarrow x-2\sqrt{x}+1< 0\)
mà \(x-2\sqrt{x}+1=\left(\sqrt{x}-1\right)^2\ge0\forall x\)
Vậy không có giá trị nào của x thỏa mãn \(\sqrt{A}>A\)
(P/s Đề câu b bị sai hay sao vậy, chả có số nào mà \(\sqrt{A}>A\) cả, check lại đề giùm với nhé)
ĐKXĐ: \(x\ge0,x\ne1\)
\(A=\dfrac{2\sqrt{x}+x-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{x+\sqrt{x}+1}{\sqrt{x}+2}\)
\(=\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\dfrac{1}{\sqrt{x}+2}\)