K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2019

A B C D E F K

a) +)EK là đường trung bình nên EK = 1/2 . CD do đó EK < CD

+) EF và AB thì đang suy nghĩ

b) Ta có: \(EK=\frac{1}{2}CD=\frac{CD}{2}\)(t/c đường trung bình)

Tương tự, ta có \(KF=\frac{1}{2}AB\)

Cộng theo vế hai đẳng thức trên ta được:

\(\frac{AB+CD}{2}=EK+KF\ge EF\) ( theo quy tắc 3 điểm)

Đẳng thức xảy ra khi K thuộc EF, khi đó \(\hept{\begin{cases}EK\text{// }CD\\KF\text{//}AB\end{cases}}\) và K thuộc EF nên suy ra  \(\hept{\begin{cases}EF\text{//}CD\\EF\text{//}AB\end{cases}}\Leftrightarrow AB\text{//}CD\)

P/s: Chỗ "đẳng thức xảy ra..." mình không chắc.

18 tháng 2 2020

A B C a O E F D

a,  xét tam giác ABD có : EO // AB (Gt)

=> EO/AB = DO/DB (hệ quả)                   (1)

xét tam giác ABC có : OF // AB (gt)

=> OF/AB = OC/CA (hệ quả)                          (2)

xét tam giác ODC có : AB // DC (gt)

=> DO/DB = OC/CA     (hệ quả)                             (3)

(1)(2)(3) => OE = OF 

b,  xét tam giác ABD  có EO // AB (gt)

=> EO/AB = DE/AD (hệ quả)                            (4)

xét tam giác ACD có : EO // DC 

=> EO/DC = EA/AD (hệ quả)                                (5)

(4)(5) => EO/AB + EO/DC = DE/AD + EA/AD

=> EO(1/AB + 1/BC) = AD/AD = 1                                 (*)

 xét tam giác ACB có : FO // AB 

=> OF/AB = FC/BC (hệ quả)                           (6)

xét tam giác BDC có : OF // DC 

=> OF/DC = BF/BC (hệ quả)                                 (7)

(6)(7) => OF/AB + OF/DC = FC/BC + BF/BC

=> OF(1/AB + 1/DC) = BC/BC = 1            (**)

(*)(**) => OF(1/AB + 1/CD) + OE(1/AB + 1/DC) = 2

=> (OF + OE)(1/AB + 1/DC) = 2

có OF + OE = EF

=> 1/AB + 1/DC = 2/EF

18 tháng 3 2020

câu a,b dễ quá

c/Có: \(\frac{2}{EF}=\frac{2}{2OE}=\frac{1}{OE}\)

Ta có: \(\frac{OE}{AB}=\frac{DE}{AD}\left(1\right),\frac{OE}{CD}=\frac{AE}{AD}\left(2\right)\).Cộng (1) và (2) đc

\(OE\left(\frac{1}{AB}+\frac{1}{CD}\right)=\frac{DE+AE}{AD}\Leftrightarrow\frac{1}{AB}+\frac{1}{CD}=\frac{1}{OE}\)

Suy ra ĐPCM

18 tháng 3 2020

Dùng Thales duy suy ra chặp là ra th, bạn gõ lên mạng là câu a,b trên google họ giải..nhát ghi qá

9 tháng 10 2020

câu 3. a) chứng minh IK =\(\frac{CD-AB}{2}\)

23 tháng 8 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

10 tháng 4 2018

Câu d, là câu riêng luôn rồi nhé 

Đặt các cạnh hình vuông là a, BM= BE= x 

\(\Rightarrow S_{MBE}=\frac{x^2}{2}\)

\(S_{AMD}=S_{CED}=\frac{a\left(a-x\right)}{2}\)

Ta có: \(S_{DEN}=a^2-\left(a\left(a-x\right)+\frac{x^2}{2}\right)\)

\(=\frac{2a^2-2a^2+2ax-x^2}{2}\)

\(=\frac{a^2-\left(a^2-2ax+x^2\right)}{2}\)

\(=\frac{a^2}{2}-\frac{\left(a-x\right)^2}{2}\le\frac{a^2}{2}\)

Dấu "=" xảy ra khi: a=x <=> BC=BE <=> E trùng C 

Quá trình mình làm chỉ tắt những ý chính, bạn làm bài cần làm đầy đủ hơn!!! 

19 tháng 11 2018

sai đầu bài rồi bạn ơi

21 tháng 11 2018

đúng mà