Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Được rồi, cách giải của bạn cũng đúng.
a. Chứng minh IK // DE và IK = DE
Gọi F là trung điểm của BC. Khi đó, theo tính chất trung tuyến, ta có: BF = FC = 1/2 BC và BD = 2/3 BG, CE = 2/3 CG. Do I và K là trung điểm của BG và CG nên BI = 1/2 BG, CK = 1/2 CG. Từ đó suy ra: BI = BD - DI = 2/3 BG - DI và CK = CE - EK = 2/3 CG - EK. Do DE // BC nên theo định lí Thales, ta có: DI / BI = EK / CK. Thay các giá trị đã tính được vào, ta được: DI / (2/3 BG - DI) = EK / (2/3 CG - EK). Rút gọn biểu thức trên, ta được: 3DI (BG - CG) = 3EK (BG - CG). Do BG - CG = BF - FC = 0 nên biểu thức trên luôn đúng với mọi DI và EK. Vậy IK // DE và IK = DE.
b. Chứng minh các tính chất yêu cầu
Do IK // DE nên theo định lí Thales, ta có: IM / IA = KN / AC. Do IA = AC nên IM = KN. Do PG // BC nên theo định lí Thales, ta có: PG / PA = GQ / QC. Do PA = QC nên PG = GQ. Do DE // BC nên theo định lí Thales, ta có: DE / BC = MI / MB. Do MB = 2MB’ với B’ là trung điểm của BC nên DE / (2MB’) = MI / MB. Nhân hai vế với 2, ta được: DE / MB’ = 2MI / MB. Do MB’ = MB nên DE = 3MI.
a/ Chứng minh rằng AK=KC,BI=ID
Vì FE là đường trung bình hình thang nên FE//AB//CD
E, F là trung điểm của AD và BC nên AK=KC
BI=ID
( trong tam giác đường thẳng qua trung điểm của 1 cạnh, // với cạnh thứ 2 thì qua trung điểm cạnh thứ 3)
b/ CHo AB=6cm,CD=10cm.Tính độ dài EI,KF,IK
EI=KF=1/2.AB=1/2.6=3 (đường trung bình tam giác)
FE=(AB+CD)/2= (10+6)/2=8
IK= FE-EI-KF=8-3-3=2
hình thang ABCD (AB // CD) , E và F lần lượt là trung điểm của AD và BC
=>EF là đường trung bình của hình thang ABCD
=> EF // AB (1)
EF // CD (2)
tam giác ABC có F là trung điểm của BC
từ (1) => FK là đường trung bình của tam giác ABC
=> K là trung điểm của AC
=> AK = KC
tam giác ADC có E là trung điểm của AD
từ (2) => FK là đường trung bình của tam giác ADC
=> I là trung điểm của BD
=> BI = ID
sửa giùm
tam giác ABD có E là trung điểm của AD
từ (2) => EI là đường trung bình của tam giác ABD
=> I là trung điểm của BD
=> BI = ID
a: Xét ΔABC có
E,D lần lượt là trung điểm của AB và AC
nên ED là đường trung bình
=>ED//BC va ED=1/2BC(5)
Xét ΔGBC có
I,K lần lượt là trung điểm của GB và GC
nên IK là đường trung bình
=>IK//BC và IK=BC/2(6)
Từ(5) và (6) suy ra DE//IK và DE=IK
b: Xét ΔBED có MI//ED
nên MI/ED=BI/BD=1/3(1)
Xét ΔCED có KN//ED
nên KN/ED=CK/CE=1/3(2)
Từ (1) và (2) suy ra MI=KN
Xét ΔBPG có MI//PG
nên MI/PG=BI/BG=1/2(3)
Xét ΔCGQ có KN//QG
nên KN/GQ=CN/CQ=1/2(4)
Từ (3)và (4) suy ra PG=GQ
câu 3. a) chứng minh IK =\(\frac{CD-AB}{2}\)