K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2023

a: Xét (O) có

ΔBEC nội tiếp

BC là đường kính

Do đó: ΔBEC vuông tại E

=>CE\(\perp\)EB tại E

=>CE\(\perp\)AB tại E

Xét (O) có

ΔBFC nội tiếp

BC là đường kính

Do đó: ΔBFC vuông tại F

=>BF\(\perp\)FC tại F

=>BF\(\perp\)AC tại F

Xét ΔABC có

BF,CE là các đường cao

BF cắt CE tại H

Do đó: H là trực tâm của ΔABC

=>AH\(\perp\)BC tại D

Xét tứ giác AEHF có

\(\widehat{AEH}+\widehat{AFH}=90^0+90^0=180^0\)

=>AEHF là tứ giác nội tiếp đường tròn đường kính AH

tâm K là trung điểm của AH

b:

Ta có: OE=OC

=>ΔOEC cân tại O

=>\(\widehat{OEC}=\widehat{OCE}\)

Ta có: ΔKHE cân tại K

=>\(\widehat{KEH}=\widehat{KHE}\)

 \(\widehat{KEO}=\widehat{KEC}+\widehat{OEC}\)

\(=\widehat{OCE}+\widehat{KHE}\)

\(=\widehat{ECB}+\widehat{DHC}=90^0\)

=>KE là tiếp tuyến của (O)

Xét ΔKEO và ΔKFO có

KE=KF

EO=FO

KO chung

Do đó: ΔKEO=ΔKFO

=>\(\widehat{KEO}=\widehat{KFO}=90^0\)

Ta có: \(\widehat{KEO}=\widehat{KFO}=\widehat{KDO}=90^0\)

=>K,E,O,F,D cùng thuộc đường tròn đường kính KO(ĐPCM)

 

29 tháng 6 2021

`a)sqrtx=sqrt{16+6sqrt7}`

`=sqrt{9+2.3sqrt7+7}`

`=sqrt{(3+sqrt7)^2}`

`=3+sqrt7`

`b)sqrtx=sqrt{4-2sqrt3}=sqrt{3-2sqrt3+1}=sqrt{(sqrt3-1)^2}=sqrt3-1`

`c)sqrtx=sqrt{13+4sqrt3}=sqrt{12+2.2sqrt3+1}=sqrt{(2sqrt3+1)^2}=2sqrt3+1`

29 tháng 6 2021

a) \(x=16+6\sqrt{7}\)

\(\Rightarrow\sqrt{x}=\sqrt{16+6\sqrt{7}}\)

\(\Rightarrow\sqrt{x}=\sqrt{7+6\sqrt{7}+9}\)

\(\Rightarrow\sqrt{x}=\sqrt{7+6\sqrt{7}+3^2}\)

\(\Rightarrow\sqrt{x}=\sqrt{\left(\sqrt{7}+3\right)^2}\)

\(\Rightarrow\left(\sqrt{x}\right)^2=\sqrt{\left(\sqrt{7}+3\right)^2}\)

\(\Rightarrow\sqrt{7}+3\)

KL: x=\(\sqrt{7}+3\)

 

1 tháng 9 2021

10. Câu này chứng minh BĐT BSC:

\(\sqrt{\left(a^2+b^2\right)\left(b^2+c^2\right)}\ge\sqrt{\left(ab+bc\right)^2}=b\left(a+c\right)\)

1 tháng 9 2021

11.

Ta có: \(\dfrac{1}{1+a}+\dfrac{1}{1+b}-\dfrac{2}{1+\sqrt{ab}}\)

\(=\dfrac{\left(1+b\right)\left(1+\sqrt{ab}\right)}{\left(1+a\right)\left(1+b\right)\left(1+\sqrt{ab}\right)}+\dfrac{\left(1+a\right)\left(1+\sqrt{ab}\right)}{\left(1+a\right)\left(1+b\right)\left(1+\sqrt{ab}\right)}-\dfrac{2\left(1+a\right)\left(1+b\right)}{\left(1+a\right)\left(1+b\right)\left(1+\sqrt{ab}\right)}\)

\(=\dfrac{1+b+\sqrt{ab}+b\sqrt{ab}}{\left(1+a\right)\left(1+b\right)\left(1+\sqrt{ab}\right)}+\dfrac{1+a+\sqrt{ab}+a\sqrt{ab}}{\left(1+a\right)\left(1+b\right)\left(1+\sqrt{ab}\right)}-\dfrac{2+2a+2b+2ab}{\left(1+a\right)\left(1+b\right)\left(1+\sqrt{ab}\right)}\)

\(=\dfrac{-a-b+2\sqrt{ab}+a\sqrt{ab}+b\sqrt{ab}-2ab}{\left(1+a\right)\left(1+b\right)\left(1+\sqrt{ab}\right)}\)

\(=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2\left(\sqrt{ab}-1\right)}{\left(1+a\right)\left(1+b\right)\left(1+\sqrt{ab}\right)}\ge0\forall x,y\ge1\)

Đẳng thức xảy ra khi \(a=b=1\)

28 tháng 8 2021

 

dùng phương pháp hình học cm câu a 

đặt BH =a , HC =c kẻ HA =b 

theo định lí py ta go ta có 

AB=a2+b2;AC=b2+c2;BC=a+b

dễ thấy AB.AC\(\ge\) 2SABC=BC.AH

(a2+b2).(b2+c2)\(\ge\)b.(a+c)

16 tháng 7 2021
ext-9bosssssssssssssssss

1) Vì x=25 thỏa mãn ĐKXĐ nên Thay x=25 vào biểu thức \(A=\dfrac{\sqrt{x}-2}{x+1}\), ta được:

\(A=\dfrac{\sqrt{25}-2}{25+1}=\dfrac{5-2}{25+1}=\dfrac{3}{26}\)

Vậy: Khi x=25 thì \(A=\dfrac{3}{26}\)

2) Ta có: \(B=\dfrac{\sqrt{x}-3}{\sqrt{x}+1}+\dfrac{2x+8\sqrt{x}-6}{x-\sqrt{x}-2}\)

\(=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}+\dfrac{2x+8\sqrt{x}-6}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x-5\sqrt{x}+6+2x+8\sqrt{x}-6}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{3x+3\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{3\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{3\sqrt{x}}{\sqrt{x}-2}\)

11 tháng 5 2021

câu 3 chứ

Câu 1: D

Câu 2: C

Câu 3: C

Câu 4: D

Câu 5: A

14 tháng 5 2022

 1: D

 2: C

 3: C

 4: D

 5: A