Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: A = 4x2 + y2 + 4x - 4y - 3 = (4x2 + 4x + 1) + (y2 - 4y + 4) - 10 = (2x + 1)2 + (y - 2)2 - 10
Ta luôn có: (2x + 1)2 \(\ge\)0 \(\forall\)x
(y - 2)2 \(\ge\)0 \(\forall\)y
=> (2x + 1)2 + (y - 2)2 - 10 \(\ge\) -10 \(\forall\)x;y
Dấu "=" xảy ra <=> \(\hept{\begin{cases}2x+1=0\\y-2=0\end{cases}}\) <=> \(\hept{\begin{cases}x=-\frac{1}{2}\\y=2\end{cases}}\)
Vậy MinA = -10 <=> x = -1/2 và y = 2
B = x2 + 4y2 - 4x + 4y + 3 = (x2 - 4x + 4) + (4y2 + 4y + 1) - 2 = (x - 2)2 + (2y + 1)2 - 2
còn lại tương tự
Bạn không nêu yêu cầu đề bài thì ai biết mà giúp bạn đúng ko?
\(x^2+4y^2-4x-4y+5=0\)
\(\Leftrightarrow x^2-4x+4+4y^2-4y+1=0\)
\(\Leftrightarrow\left(x^2-2\cdot x\cdot2+2^2\right)+\left[\left(2y\right)^2-2\cdot2y\cdot1+1^2\right]=0\)
\(\Leftrightarrow\left(x-2\right)^2+\left(2y-1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x-2=0\\2y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=\frac{1}{2}\end{cases}}}\)
Vậy....
Bài làm
a) 4x - 8y
<=> 4( x - 2y )
b) 12x( x - 2y ) - 8y( x - 2y )
<=> ( 12x - 8y )( x - 2y )
<=> 4( 3x - 2y )( x - 2y )
c) 2x + 2y - x2 - xy
= 2( x + y ) - x( x + y )
= ( x + y )( 2 - x )
d) x2 - 4y2
<=> ( x - 2y )( x + 2y )
e) x3 + x2y - 4x - 4y
<=> x2( x + y ) - 4( x + y )
<=> ( x - 2 )( x + 2 )( x + y )
g) 3x2 - 6xy + 3y2 - 12x3
<=>3( x2 - 3xy + y2 - 4x3 )
# Học tốt #
a)4(x-2y)
b)(x-2y)(12x-8y)
=4(x-2y)(3x-2y)
c)2(x+y)-x(x+y)
=(2-x)(x+y)
d)(x-2y)(x+2y)
e)x2(x+y)-4(x+y)
=(x+y)(x2-4)
=(x+y)(x-2)(x+2)
g)3(x2-2xy+y2-4z3)
=3[(x-y)2-4z3]
????????????phải là 4z2chứ nhỉ.....
Bài làm:
a) Ta có: \(-4x^2-4x-2=-\left(4x^2+4x+1\right)-1\)
\(=-\left(2x+1\right)^2-1\le-1< 0\left(\forall x\right)\)
=> đpcm
b) \(x^2+4y^2+z^2-2x-6z+8y+15\)
\(=\left(x^2-2x+1\right)+\left(4y^2-8y+4\right)+\left(z^2-6z+9\right)+1\)
\(=\left(x-1\right)^2+4\left(y-1\right)^2+\left(z-3\right)^2+1\ge1>0\left(\forall x\right)\)
=> đpcm
a) Ta có: \(-4x^2-4x-2=-\left(4x^2+4x+1\right)-1\)
\(=-\left(2x+1\right)^2-1\)
Vì \(-\left(2x+1\right)^2\le0\forall x\)\(\Rightarrow\)\(-\left(2x+1\right)^2-1\le-1\forall x\)
\(\Rightarrow\)\(-\left(2x+1\right)^2-1< 0\forall x\)
\(\Rightarrow\)\(-4x^2-4x-2< 0\forall x\)( ĐPCM )
b) Ta có: \(x^2+4y^2+z^2-2x-6z+8y+15\)
\(=\left(x^2-2x+1\right)+\left(4y^2+8y+4\right)+\left(z^2-6z+9\right)+1\)
\(=\left(x-1\right)^2+\left(2y+2\right)^2+\left(z-3\right)^2+1\)
Vì \(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left(2y+2\right)^2\ge0\forall y\\\left(z-3\right)^2\ge0\forall z\end{cases}}\)\(\Rightarrow\)\(\left(x-1\right)^2+\left(2y+2\right)^2+\left(z-3\right)^2\ge0\forall x,y,z\)
\(\Rightarrow\)\(\left(x-1\right)^2+\left(2y+2\right)^2+\left(z-3\right)^2+1\ge1\forall x,y,z\)
\(\Rightarrow\)\(\left(x-1\right)^2+\left(2y+2\right)^2+\left(z-3\right)^2+1>0\forall x,y,z\)( ĐPCM )
ta có x^2 + 4x - 4y^2 + 8y = x^2 + 4x + 4 - ( 4y^2 - 8y^2 + 4) = (x+2)^2 - (2y-2)^2