K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1

Đầu tiên bạn vẽ một đường tròn bất kì

sau đó bạn đo bán kính của nó và nhân với \(\dfrac{\sqrt{3}}{2}\)

Và vẽ đường tròn còn lại với tâm là đường tròn thứ nhất, bán kính là kết quả của phép tính trên

17 tháng 11 2023

Gọi H,K lần lượt là các tiếp điểm của các tiếp tuyến cắt nhau tại M của (O;r)

=>OH=OK và OH\(\perp\)MB tại H và OK\(\perp\)MD tại K

Xét (O,R) có

OH,OK lần lượt là khoảng cách từ O xuống các dây AB,CD

OH=OK

Do đó: \(sđ\stackrel\frown{AB}=sđ\stackrel\frown{CD}\)

10 tháng 1 2023

Gọi \(I\) là trung điểm \(AB\)

\(=>IA=IB=\dfrac{R\sqrt{3}}{2}\)

Áp dụng Pytago vào \(\Delta OIA\) có

\(OI^2+IA^2=OA^2\\ =>OI=\sqrt{OA^2-IA^2}=\sqrt{R^2-\left(\dfrac{R\sqrt{3}}{2}\right)^2}=\dfrac{R}{2}\\ =>A\)

a:

I nằm giữa O và A

=>OI+IA=OA

=>OI=OA-AI

=R-R'

=>(O) với (I) tiếp xúc nhau tại A

b: ΔIAD cân tại I

=>góc IAD=góc IDA

=>góc IDA=góc OAC

ΔOAC cân tại O

=>góc OAC=góc OCA

=>góc IDA=góc OCA
mà hai góc này đồng vị

nên ID//OC

c: Xét (I) có

ΔADO nội tiếp

AO là đường kính

=>ΔADO vuông tại D

Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó; ΔACB vuông tại C

Xét ΔACB vuông tại C có cos CAB=AC/AB=1/2*căn 3

=>góc CAB=30 độ

CB=căn AB^2-AC^2=R/2

\(S_{CAB}=\dfrac{1}{2}\cdot CA\cdot CB=\dfrac{1}{2}\cdot\dfrac{R\sqrt{3}}{2}\cdot\dfrac{1}{2}R=\dfrac{R^2\sqrt{3}}{8}\)

Xét ΔADO vuông tại D và ΔACB vuông tại C có

góc DAO chung

Do đó: ΔADO đồng dạng với ΔACB

=>\(\dfrac{S_{ADO}}{S_{ACB}}=\left(\dfrac{AO}{AB}\right)^2=\left(\dfrac{1}{4}\right)\)

=>\(S_{ODCB}=\dfrac{3}{4}\cdot S_{ACB}=\dfrac{3}{4}\cdot\dfrac{R^2\sqrt{3}}{8}=\dfrac{3\cdot\sqrt{3}\cdot R^2}{32}\)

16 tháng 5 2018

a)

Giải bài tập Toán 9 | Giải Toán lớp 9

b) Cách vẽ lục giác đều có tất cả các đỉnh nằm trên đường tròn (O)

Vẽ các dây cung AB = BC = CD = DE = EF = FA = R = 2 cm

(Ta đã nêu được cách chia đường tròn thành sáu cung bằng nhau tại bài tập 10 SGK trang 71)

c) Vì các dây cung AB = BC = CD = DE = EF = FA bằng nhau nên khoảng cách từ O đến các dây là bằng nhau ( định lý liên hệ giữa dây cung và khoảng cách từ tâm đến dây)

NV
12 tháng 9 2021

b.

Áp dụng định lý Pitago trong tam giác vuông COI:

\(CI=\sqrt{OC^2+OI^2}=\sqrt{R^2+\left(\dfrac{R}{3}\right)^2}=\dfrac{R\sqrt{10}}{3}\)

Do 2 tam giác COI và CED đồng dạng

\(\Rightarrow\dfrac{CE}{CO}=\dfrac{CD}{CI}\Rightarrow CE=\dfrac{CD.CO}{CI}=\dfrac{2R.R}{\dfrac{R\sqrt{10}}{3}}=\dfrac{3R\sqrt{10}}{5}\)

NV
12 tháng 9 2021

undefined