Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi H,K lần lượt là các tiếp điểm của các tiếp tuyến cắt nhau tại M của (O;r)
=>OH=OK và OH\(\perp\)MB tại H và OK\(\perp\)MD tại K
Xét (O,R) có
OH,OK lần lượt là khoảng cách từ O xuống các dây AB,CD
OH=OK
Do đó: \(sđ\stackrel\frown{AB}=sđ\stackrel\frown{CD}\)
Gọi giao điểm của MB với (O;r) là H, giao điểm của MD với (O;r) là K
Theo đề, ta có: OH\(\perp\)MB tại H và OK\(\perp\)MD tại K
Xét (O) có
OH,OK là khoảng cách từ tâm O đến cách dây AB,CD
AB,CD là các dây
OH=OK(=r)
Do đó: AB=CD
ΔOAB cân tại O
mà OH là đường cao
nên H là trung điểm của AB
=>HA=HB=AB/2
Ta có: ΔOCD cân tại O
mà OK là đường cao
nên K là trung điểm của CD
=>\(CK=KD=\dfrac{CD}{2}\)
mà CD=AB và \(HA=HB=\dfrac{AB}{2}\)
nên CK=KD=HA=HB
Xét ΔOHM vuông tại H và ΔOKM vuông tại K có
OH=OK
OM chung
Do đó: ΔOHM=ΔOKM
=>MH=MK
Ta có: MA+AH=MH
MC+CK=MK
mà AH=CK và MH=MK
nên MA=MC
Xét ΔMBD có \(\dfrac{MA}{AB}=\dfrac{MC}{CD}\)
nên AC//BD
=>\(sđ\stackrel\frown{AB}=sđ\stackrel\frown{CD}\)
a: Xét ΔOBA vuông tại B có BH là đường cao
nên OH*OA=OB^2=R^2
b: Xét ΔABC và ΔADB có
góc ABC=góc ADB
góc BAC chung
Do đó; ΔABCđồng dạng với ΔADB
=>AB/AD=AC/AB
=>AB^2=AD*AC
=>AD*AC=AH*AO
a: Phải vì góc này tạo bởi tiếp tuyến MA và day cung AB
b: Xét ΔMOA vuông tại A có cosMOA=OA/OM=1/2
=>góc MOA=60 độ
sđ cung AB=2*60=120 độ
c: Xét (O) có
MA,MB là tiếp tuyến
=>MA=MB
mà OA=OB
nên OM là trung trực của AB
=>OM vuông góc AB tại H
=>MH*MO=MA^2
Xét ΔMAC và ΔMDA có
góc MAC=góc MDA
góc AMC chung
=>ΔMAC đồng dạng với ΔMDA
=>MA/MD=MC/MA
=>MA^2=MD*MC=MH*MO
a: OH*OM=OA^2=R^2
b: Xét tứ giác MAIO có góc MIO=góc MAO=90 độ
nên MAIO là tứ giác nội tiếp
a: Xét ΔOAM vuông tại A có AH là đường cao
nên OH*OM=OA^2=R^2 ko đổi
b: Xét tứ giác MAIO có
góc MAO=góc MIO=90 độ
nên MAIO là tứ giác nội tiếp
b: Xét tứ giác MAIO có
\(\widehat{OIM}=\widehat{OAM}=90^0\)
Do đó: MAIO là tứ giác nội tiếp
a: OH*OM=OA^2=R^2
b: ΔOCD cân tại O
mà OI là đường trung tuyến
nên OI vuông góc với CD
Xét tứ giác OIAM có
góc OIM=góc OAM=90 độ
nên OIAM là tứ giác nội tiếp
c: Xét ΔOHK vuông tại H và ΔOIM vuông tại I có
góc HOK chung
Do đo: ΔOHK đồng dạng với ΔOIM
=>OH/OI=OK/OM
=>OI*OK=OH*OM=R^2=OC^2
mà CI vuông góc với OK
nên ΔOCK vuông tại C
=>KC là tiếp tuyến của (O)