K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2015

Ác  MỘng  Sai rồi kìa vì phải phân ra 2 trường hợp

Hoặc   dương.dương=dương>0

               âm.âm=dương>0

16 tháng 6 2015

x^2 -4x +3 >=0 => (x-1)(x-3) >=0 => Hoặc cả hai điều x - 1 > = 0 và x-3 >=0 => x>= 1 và x> = 3 

                                                                                              x - 1<= 0 và x - 3 <= 0  => x<= 1 và x<= 3

Tóm lại  x>=3 hoặc x<=3

17 tháng 6 2017

\(a,A=-1+3-5+7-9+...-2013+2015-2017=\left(-1+3\right)+\left(-5+7\right)+...+\left(-2013+2015\right)-2017\)\(=2+2+..+2-2017\)

\(=2.504-2017=-1009\)

\(b,B=2-4+6-8+...+2014-2016+2018\)\(=2+\left(-4+6\right)+\left(-8+10\right)+...+\left(-2016+2018\right)==2+2+...+2\)\(=2+503.2=1008\)

3 tháng 9 2018

\(Q_{\left(x\right)}=x^{14}-10x^{13}+10x^{12}-10x^{11}+...+10x^2-10x+10\)

\(=x^{14}-\left(x+1\right)x^{13}+\left(x+1\right)x^{12}-\left(x+1\right)x^{11}+..+\left(x+1\right)x^2-\left(x+1\right)x+x+1\)

\(=x^{14}-x^{14}-x^{13}+x^{13}+x^{12}-x^{12}-x^{11}+...+x^3+x^2-x^2-x+x+1\)

\(=1\)

7 tháng 7 2020

\(a.P(x)=x^7-80x^6+80x^5-80x^4+....+80x+15\)

\(=x^7-79x^6-x^6+79x^5+x^5-79x^4-....-x^2+79x+x+15\)

\(=x^6(x-79)-x^5(x-79)+x^4(x-79)-....-x(x-79)+x+15\)

\(=(x-79)(x^6-x^5+x^4-....-x)+x+15\)

Thay x = 79 vào biểu thức trên , ta có

\(P(79)=(79-79)(79^6-79^5+79^4-...-79)+79+15\)

\(=0+79+15\)

\(=94\)

Vậy \(P(x)=94\)khi x = 79

\(b.Q(x)=x^{14}-10x^{13}+10x^{12}-.....+10x^2-10x+10\)

\(=x^{14}-9x^{13}-x^{13}+9x^{12}+.....-x^3+9x^2+x^2-9x-x+10\)

\(=x^{13}(x-9)-x^{12}(x-9)+.....-x^2(x-9)+x(x-9)-x+10\)

\(=(x-9)(x^{13}-x^{12}+.....-x^2+x)-x+10\)

Thay x = 9 vào biểu thức trên , ta có

\(Q(9)=(9-9)(9^{13}-9^{12}+.....-9^2+9)-9+10\)

\(=0-9+10\)

\(=1\)

Vậy \(Q(x)=1\)khi x = 9

\(c.R(x)=x^4-17x^3+17x^2-17x+20\)

\(=x^4-16x^3-x^3+16x^2+x^2-16x-x+20\)

\(=x^3(x-16)-x^2(x-16)+x(x-16)-x+20\)

\(=(x-16)(x^3-x^2+x)-x+20\)

Thay x = 16 vào biểu thức trên , ta có

\(R(16)=(16-16)(16^3-16^2+16)-16+20\)

\(=0-16+20\)

\(=4\)

Vậy \(R(x)=4\)khi x = 16

\(d.S(x)=x^{10}-13x^9+13x^8-13x^7+.....+13x^2-13x+10\)

\(=x^{10}-12x^9-x^9+12x^8+.....+x^2-12x-x+10\)

\(=x^9(x-12)-x^8(x-12)+....+x(x-12)-x+10\)

\(=(x-12)(x^9-x^8+....+x)-x+10\)

Thay x = 12 vào biểu thức trên , ta có

\(S(12)=(12-12)(12^9-12^8+....+12)-12+10\)

\(=0-12+10\)

\(=-2\)

Vậy \(S(x)=-2\)khi x = 12

Hình như đây là toán lớp 7 có trong phần trắc nghiệm của thi HSG huyện

Chúc bạn học tốt , nhớ kết bạn với mình

22 tháng 4 2017

Có : x2 + 12 > 0 với mọi x

=> 4x - 1 > 0 , -x + 4 > 0 hoặc 4x - 1 < 0 , -x + 4 < 0

=> x > 1/4 , x < 4 hoặc x < 1/4 , x > 4

=>1/4 < x < 4 (thỏa mãn) hoặc 1/4 > x > 4(không thỏa mãn)

Vậy 1/4 < x < 4

2 tháng 5 2022

\(\left(x-1\right)^3+x^3+\left(x+1\right)^3=\left(x+2\right)^3\)

\(\Leftrightarrow x^3-3x^2+3x-1+x^3+x^3+3x^2+3x+1-x^3-6x^2-12x-8=0\)

\(\Leftrightarrow2x^3-6x^2-6x-8=0\)

\(\Leftrightarrow2.\left(x^3-3x^2-3x-4\right)=0\)

\(\Leftrightarrow x^3-4x^2+x^2-4x+x-4=0\)

\(\Leftrightarrow x^2.\left(x-4\right)+x.\left(x-4\right)+\left(x-4\right)=0\)

\(\Leftrightarrow\left(x-4\right).\left(x^2+x+1\right)=0\)

Mà \(x^2+x+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)

\(\Rightarrow x-4=0\Leftrightarrow x=4\)

14 tháng 7 2019

a) \(\left(2x+1\right)^2-4\left(x+2\right)^2=12\)

\(\Leftrightarrow4x^2+4x+1-4\left(x^2+4x+4\right)=12\)

\(\Leftrightarrow4x^2+4x+1-4x^2-16x-16-12=0\)

\(\Leftrightarrow-12x-27=0\)

\(\Leftrightarrow x=\frac{-9}{4}\)

b) xem lại đề

c) \(\left(x-3\right)\left(x^2+3x+9\right)+x\left(x-3\right)\left(3-x\right)=1\)

\(\Leftrightarrow x^3-27-x\left(x-3\right)^2=1\)

\(\Leftrightarrow x^3-27-x\left(x^2-6x+9\right)-1=0\)

\(\Leftrightarrow x^3-28-x^3+6x^2-9x=0\)

\(\Leftrightarrow6x^2-9x-28=0\)

\(\Leftrightarrow6\left(x^2-\frac{3}{2}x-\frac{14}{3}\right)=0\)

\(\Leftrightarrow x^2-2\cdot x\cdot\frac{3}{4}+\frac{9}{16}-\frac{251}{48}=0\)

\(\Leftrightarrow\left(x-\frac{3}{4}\right)^2=\frac{251}{48}=\left(\pm\sqrt{\frac{251}{48}}\right)^2\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{3}{4}=\sqrt{\frac{251}{48}}=\frac{\sqrt{753}}{12}\\x-\frac{3}{4}=-\sqrt{\frac{251}{48}}=\frac{-\sqrt{753}}{12}\end{matrix}\right.\)

\(\Leftrightarrow x=\frac{\pm\sqrt{753}}{12}+\frac{3}{4}=\frac{9\pm\sqrt{753}}{12}\)

d) \(\left(x+1\right)^3-\left(x-1\right)^3-6\left(x-1\right)^2=-19\)

\(\Leftrightarrow x^3+3x^2+3x+1-x^3+3x^2-3x+1-6x^2+12x-6+19=0\)

\(\Leftrightarrow12x+15=0\)

\(\Leftrightarrow x=\frac{-5}{4}\)

14 tháng 7 2019

Theo giả thiết:

\(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca=3ab+3bc+3ca\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\)

\(\Leftrightarrow2\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Dễ thấy \(VT\ge0\forall a;b;c\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\)\(\Leftrightarrow a=b=c\)(đpcm)

22 tháng 8 2021

\(f\left(x\right)=x^3-x^2+3x-3\)

\(=x^2\left(x-1\right)+3\left(x-1\right)\)

\(=\left(x^2+3\right)\left(x-1\right)\)

Để \(f\left(x\right)>0\Leftrightarrow\left(x^2+3\right)\left(x-1\right)>0\)

Mà \(x^2\ge0\forall x\Leftrightarrow x^2+3>0\)

\(\Rightarrow x-1>0\Leftrightarrow x=1\)

\(h\left(x\right)=4x^3-14x^2+6x-21< 0\)

\(\Leftrightarrow0\left(x-\frac{7}{2}\right)\left(4x^2+6\right)< 0\)

Mà \(4x^2+6>0\forall x\Leftrightarrow h\left(x\right)< 0\Leftrightarrow x-\frac{7}{2}< 0\Leftrightarrow x< \frac{7}{2}\)

12 tháng 11 2021

f(x)=x3−x2+3x−3f(x)=x3−x2+3x−3

=x2(x−1)+3(x−1)=x2(x−1)+3(x−1)

=(x2+3)(x−1)=(x2+3)(x−1)

Để f(x)>0⇔(x2+3)(x−1)>0f(x)>0⇔(x2+3)(x−1)>0

Mà x2≥0∀x⇔x2+3>0x2≥0∀x⇔x2+3>0

⇒x−1>0⇔x=1⇒x−1>0⇔x=1

h(x)=4x3−14x2+6x−21<0h(x)=4x3−14x2+6x−21<0

⇔0(x−72)(4x2+6)<0⇔0(x−72)(4x2+6)<0

Mà 4x2+6>0∀x⇔h(x)<0⇔x−72<0⇔x<72