Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^3-x^2+3x-3>0\)
\(\Leftrightarrow x^2\left(x-1\right)+3\left(x-1\right)>0\)
\(\Leftrightarrow\left(x^2+3\right)\left(x-1\right)>0\)
Mà: \(x^2+3>0\forall x\)
\(\Leftrightarrow x-1>0\)
\(\Leftrightarrow x>1\)
b) \(x^3+x^2+9x+9< 0\)
\(\Leftrightarrow x^2\left(x+1\right)+9\left(x+1\right)< 0\)
\(\Leftrightarrow\left(x^2+9\right)\left(x+1\right)< 0\)
Mà: \(x^2+9>0\forall x\)
\(\Leftrightarrow x+1< 0\)
\(\Leftrightarrow x< -1\)
d) \(4x^3-14x^2+6x-21< 0\)
\(\Leftrightarrow2x^2\left(2x-7\right)+3\left(2x-7\right)< 0\)
\(\Leftrightarrow\left(2x^2+3\right)\left(2x-7\right)< 0\)
Mà: \(2x^2+3>0\forall x\)
\(\Leftrightarrow2x-7< 0\)
\(\Leftrightarrow2x< 7\)
\(\Leftrightarrow x< \dfrac{7}{2}\)
d) \(x^2\left(2x^2+3\right)+2x^2>-3\)
\(\Leftrightarrow2x^4+3x^2+2x^2+3>0\)
\(\Leftrightarrow2x^4+5x^2+3>0\)
\(\Leftrightarrow\left(x^2+1\right)\left(2x^2+3\right)>0\)
Mà:
\(x^2+1>0\forall x\)
\(2x^2+3>0\forall x\)
\(\Rightarrow x\in R\)
a: =>x^2(x-1)+3(x-1)>0
=>(x-1)(x^2+3)>0
=>x-1>0
=>x>1
b: =>x^2(x+1)+9(x+1)<0
=>(x+1)(x^2+9)<0
=>x+1<0
=>x<-1
c: 4x^3-14x^2+6x-21<0
=>2x^2(2x-7)+3(2x-7)<0
=>2x-7<0
=>x<7/2
d: =>x^2(2x^2+3)+2x^2+3>0
=>(2x^2+3)(x^2+1)>0(luôn đúng)
`A=(x^2-2)(x^2+x-1)-x(x^3+x^2-3x-2)`
`=x^4+x^3-x^2-2x^2-2x+2-x^4-x^3+3x^2+2x`
`=(x^4-x^4)+(x^3-x^3)+(3x^2-x^2-2x^2)+(2x-2x)+2`
`=2`
\(\dfrac{x}{a}=\dfrac{m-\dfrac{x}{2}}{m}\)
\(\Rightarrow xm=a\left(m-\dfrac{x}{2}\right)\)
\(\Rightarrow xm=am-\dfrac{ax}{2}\)
\(\Rightarrow2xm=2am-ax\)
\(\Rightarrow2xm+ax=2am\)
\(\Rightarrow x\left(2m+a\right)=2am\)
\(\Rightarrow x=\dfrac{2am}{a+2m}\)
a)=\(3x^3-15x^2+21x\)
b)\(=-2x^4y-10x^2y+2xy\)
c)\(=-x^3+6x^2+5x-4x^2+24x+20=-x^3+2x^2+29x+20\)
d)\(=2x^4-3x^3+4x^2-2x^2+3x-4=2x^4-3x^32x^2+3x-4\)
e)\(=x^2-4y^2\)
f)\(=-2x^2y^3+y-3\)
g)\(=3xy^4-\dfrac{1}{2}y^2+2x^2y\)
h)\(=9x^2-6x+1-7x^2-14=2x^2-6x-13\)
i)\(=x^2-x-3\)
j)\(=\left(x+2y\right)\left(x^2-2y+4y^2\right):\left(x+2y\right)=x^2-2y+4y^2\)
\(f\left(x\right)=x^3-x^2+3x-3\)
\(=x^2\left(x-1\right)+3\left(x-1\right)\)
\(=\left(x^2+3\right)\left(x-1\right)\)
Để \(f\left(x\right)>0\Leftrightarrow\left(x^2+3\right)\left(x-1\right)>0\)
Mà \(x^2\ge0\forall x\Leftrightarrow x^2+3>0\)
\(\Rightarrow x-1>0\Leftrightarrow x=1\)
\(h\left(x\right)=4x^3-14x^2+6x-21< 0\)
\(\Leftrightarrow0\left(x-\frac{7}{2}\right)\left(4x^2+6\right)< 0\)
Mà \(4x^2+6>0\forall x\Leftrightarrow h\left(x\right)< 0\Leftrightarrow x-\frac{7}{2}< 0\Leftrightarrow x< \frac{7}{2}\)
f(x)=x3−x2+3x−3f(x)=x3−x2+3x−3
=x2(x−1)+3(x−1)=x2(x−1)+3(x−1)
=(x2+3)(x−1)=(x2+3)(x−1)
Để f(x)>0⇔(x2+3)(x−1)>0f(x)>0⇔(x2+3)(x−1)>0
Mà x2≥0∀x⇔x2+3>0x2≥0∀x⇔x2+3>0
⇒x−1>0⇔x=1⇒x−1>0⇔x=1
h(x)=4x3−14x2+6x−21<0h(x)=4x3−14x2+6x−21<0
⇔0(x−72)(4x2+6)<0⇔0(x−72)(4x2+6)<0
Mà 4x2+6>0∀x⇔h(x)<0⇔x−72<0⇔x<72