Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 5x(x-2) + (2-x)=0
⇔5x(x-2) - (x-2) =0
⇔(x-2)(5x-1)=0
\(\left[{}\begin{matrix}x-2=0\\5x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{1}{5}\end{matrix}\right.\)
Vậy....
c, (x3 - x2) - 4x2 + 8x -4 =0
⇔x3 - x2 -4x2 + 8x - 4=0
⇔x2(x-1) - 4x(x-1) +4(x-1) =0
⇔(x-1) (x-2)2=0
⇔\(\left[{}\begin{matrix}x-1=0\\\left(x-2\right)^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Vậy...
Phần b cậu có chép sai đề không?
\(f\left(x\right)=x^3-x^2+3x-3\)
\(=x^2\left(x-1\right)+3\left(x-1\right)\)
\(=\left(x^2+3\right)\left(x-1\right)\)
Để \(f\left(x\right)>0\Leftrightarrow\left(x^2+3\right)\left(x-1\right)>0\)
Mà \(x^2\ge0\forall x\Leftrightarrow x^2+3>0\)
\(\Rightarrow x-1>0\Leftrightarrow x=1\)
\(h\left(x\right)=4x^3-14x^2+6x-21< 0\)
\(\Leftrightarrow0\left(x-\frac{7}{2}\right)\left(4x^2+6\right)< 0\)
Mà \(4x^2+6>0\forall x\Leftrightarrow h\left(x\right)< 0\Leftrightarrow x-\frac{7}{2}< 0\Leftrightarrow x< \frac{7}{2}\)
f(x)=x3−x2+3x−3f(x)=x3−x2+3x−3
=x2(x−1)+3(x−1)=x2(x−1)+3(x−1)
=(x2+3)(x−1)=(x2+3)(x−1)
Để f(x)>0⇔(x2+3)(x−1)>0f(x)>0⇔(x2+3)(x−1)>0
Mà x2≥0∀x⇔x2+3>0x2≥0∀x⇔x2+3>0
⇒x−1>0⇔x=1⇒x−1>0⇔x=1
h(x)=4x3−14x2+6x−21<0h(x)=4x3−14x2+6x−21<0
⇔0(x−72)(4x2+6)<0⇔0(x−72)(4x2+6)<0
Mà 4x2+6>0∀x⇔h(x)<0⇔x−72<0⇔x<72
2. Ta có: A = x2 - 6x + 5 = (x2 - 6x + 9) - 4 = (x - 3)2 - 4
Ta luôn có: (x - 3)2 \(\ge\)0 \(\forall\)x
=> (x - 3)2 - 4 \(\ge\)-4 \(\forall\)x
Dấu "=" xảy ra <=> x - 3 = 0 <=> x = 3
Vậy MinA = -4 tại x = 3
Ta có: B = 4x2 - 8x + 7 = 4(x2 - 2x + 1) + 3 = 4(x - 1)2 + 3
Ta luôn có: 4(x - 1)2 \(\ge\)0 \(\forall\)x
=> 4(x - 1)2 + 3 \(\ge\)3 \(\forall\)x
Dấu "=" xảy ra <=> x - 1 = 0 <=> x = 1
vậy MinB = 3 tại x = 1
Ta có: C = 2x2 + 4x - 6 = 2(x2 + 2x + 1) - 8 = 2(x + 1)2 - 8
Ta luôn có: 2(x + 1)2 \(\ge\)0 \(\forall\)x
=> 2(x + 1)2 - 8 \(\ge\)-8 \(\forall\)x
Dấu "=" xảy ra <=> x + 1 = 0 <=> x = -1
Vậy MinC = -8 tại x = -1
1/
\(A=x^2-6x+5\)
\(A=x^2-2\cdot3x+3^2-3^2+5\)
\(A=\left(x-3\right)^2-3^2+5\)
\(A=\left(x-3\right)^2-9+5\)
\(A=\left(x-3\right)^2-4\)
mà \(\left(x-3\right)^2\ge0\Rightarrow\left(x-3\right)^2-4\ge-4\)
\(\Rightarrow GTNNA\left(x^2-6x+5\right)=-4\)
với \(\left(x-3\right)^2=0;x=3\)
\(B=4x^2-8x+7\)
\(B=4\left(x^2-2x+\frac{7}{4}\right)\)
\(B=4\left(x^2-2\cdot1x+1-1+\frac{7}{4}\right)\)
\(B=4\left(x-1\right)^2+3\)
\(\left(x-1\right)^2\ge0\Rightarrow4\left(x^2-1\right)^2+3\ge3\)
\(\Rightarrow GTNNB=3\)
với \(\left(x-1\right)^2=0;x=1\)
\(C=2x^2+4x-6\)
\(C=2\left(x^2+2x-3\right)\)
\(C=2\left(x^2+2\cdot1x+1-1-3\right)\)
\(C=\left(x+1\right)^2-8\)
có\(\left(x+1\right)^2\ge0\Rightarrow\left(x+1\right)^2-8\ge-8\)
\(\Rightarrow GTNNC=-8\)
với \(\left(x+1\right)^2=0;x=-1\)
2.
c) \(C=2x^2+4x-6=2\left(x^2+2x+1\right)-8\)
\(=2\left(x+1\right)^2-8\ge-8\forall x\)
Dấu"=" xảy ra<=> \(2\left(x+1\right)^2=0\Leftrightarrow x=-1\)
3.
c) \(C=-3x^2-6x+9=-3\left(x^2+2x+1\right)+12\)
\(=-3\left(x+1\right)^2+12\le12\forall x\)
Dấu "=" xảy ra<=> \(-3\left(x+1\right)^2=0\Leftrightarrow x=-1\)
\(2,GTNN\)
\(A=x^2-6x+5=x^2+6x+9-4\)
\(=\left(x+3\right)^2-4\ge-4\)
\(A_{min}=-4\Leftrightarrow\left(x+3\right)^2=0\Rightarrow x=-3\)
\(B=4x^2-8x+7=4\left(x^2-2x+\frac{7}{4}\right)\)
\(=4\left(x^2-2x+1+\frac{3}{4}\right)=4\left(x-1\right)^2+3\ge3\)
\(\Rightarrow B_{min}=3\Leftrightarrow\left(x-1\right)^2=0\Rightarrow x=1\)
\(C=2x^2+4x-6=2\left(x^2+2x-3\right)\)
\(=2\left(x^2+2x+1-4\right)=2\left(x+1\right)^2-8\ge-8\)
\(\Rightarrow C_{min}=-8\Leftrightarrow\left(x+1\right)^2=0\Rightarrow x=-1\)
\(3,GTLN\)
\(A=-x^2+2x-3=-\left(x^2-2x+3\right)\)
\(=-\left(x^2-2x+1-4\right)=-\left(x-1\right)^2+4\le4\)
\(A_{max}=4\Leftrightarrow-\left(x-1\right)^2=0\Rightarrow x=1\)
\(B=-9x^2+6x-4=-\left[9x^2-6x+4\right]\)
\(=-\left[\left(3x\right)^2-6x+1+3\right]=-\left(3x-1\right)^2-3\)
\(B_{max}=-3\Leftrightarrow-\left(3x-1\right)^2=0\Rightarrow x=\frac{1}{3}\)
\(C=-3x^2-6x+9=-3\left(x^2+2x-3\right)\)
\(=-3\left(x^2+2x+1-4\right)=-3\left(x+1\right)^2+12\)
\(C_{max}=12\Leftrightarrow-3\left(x+1\right)^2=0\Rightarrow x=-1\)
a) Ta có: \(x^2-3x+2=0\)
\(\Leftrightarrow x^2-x-2x+2=0\)
\(\Leftrightarrow\left(x^2-x\right)-\left(2x-2\right)=0\)
\(\Leftrightarrow x\left(x-1\right)-2\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Vậy: \(x\in\left\{1;2\right\}\)
b) Ta có: \(-x^2+5x-6=0\)
\(\Leftrightarrow-\left(x^2-5x+6\right)=0\)
\(\Leftrightarrow-\left(x^2-2x-3x+6\right)=0\)
\(\Leftrightarrow-\left[\left(x^2-2x\right)-\left(3x-6\right)\right]=0\)
\(\Leftrightarrow-\left[x\left(x-2\right)-3\left(x-2\right)\right]=0\)
\(\Leftrightarrow-\left[\left(x-2\right)\left(x-3\right)\right]=0\)
\(\Leftrightarrow-\left(x-2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-3=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
Vậy: x∈{2;3}
c) Ta có: \(4x^2-12x+5=0\)
\(\Leftrightarrow4x^2-10x-2x+5=0\)
⇔(4x2-10x)-(2x-5)=0
\(\Leftrightarrow2x\left(2x-5\right)-\left(2x-5\right)=0\)
\(\Leftrightarrow\left(2x-5\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-5=0\\2x-1=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}2x=5\\2x=1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{5}{2}\\x=\frac{1}{2}\end{matrix}\right.\)
Vậy: \(x\in\left\{\frac{1}{2};\frac{5}{2}\right\}\)
d) Ta có: \(2x^2+5x+3=0\)
\(\Leftrightarrow2x^2+2x+3x+3=0\)
\(\Leftrightarrow\left(2x^2+2x\right)+\left(3x+3\right)=0\)
\(\Leftrightarrow2x\left(x+1\right)+3\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\2x+3=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\2x=-3\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-\frac{3}{2}\end{matrix}\right.\)
Vậy: \(x\in\left\{-1;\frac{-3}{2}\right\}\)
e) Ta có: \(x^3+2x^2-x-2=0\)
\(\Leftrightarrow\left(x^3+2x^2\right)-\left(x+2\right)=0\)
\(\Leftrightarrow x^2\left(x+2\right)-\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-1=0\\x+1=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=1\\x=-1\end{matrix}\right.\)
Vậy: \(x\in\left\{-2;1;-1\right\}\)
g) Ta có: \(\left(3x-1\right)^2-5\left(2x+1\right)^2+\left(6x-3\right)\left(2x+1\right)=\left(x-1\right)^2\)
\(\Leftrightarrow9x^2-6x+1-20x^2-20x-5+12x^2-3-x^2+2x-1=0\)
\(\Leftrightarrow-24x-8=0\)
\(\Leftrightarrow-8\left(3x+1\right)=0\)
⇔3x+1=0
\(\Leftrightarrow3x=-1\)
\(\Leftrightarrow x=-\frac{1}{3}\)
Vậy: \(x=-\frac{1}{3}\)
h) \(2x^3-7x^2+7x-2=0\)
\(\Leftrightarrow2x^3-4x^2-3x^2+6x+x-2=0\)
\(\Leftrightarrow2x^2\left(x-2\right)-3x\left(x-2\right)+\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x^2-3x+1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x^2-2x-x+1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[2x\left(x-1\right)-\left(x-1\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-1\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-1=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=1\\x=\frac{1}{2}\end{matrix}\right.\)
Vậy S = {2; 1; \(\frac{1}{2}\)}
i) \(x^4+2x^3+5x^2+4x-12=0\)
\(\Leftrightarrow x^4-x^3+3x^3-3x^2+8x^2-8x+12x-12=0\)
\(\Leftrightarrow x^3\left(x-1\right)+3x^2\left(x-1\right)+8x\left(x-1\right)+12\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+3x^2+8x+12\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+2x^2+x^2+2x+6x+12\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x+2\right)+x\left(x+2\right)+6\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2+x+6\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left[\left(x+\frac{1}{2}\right)^2+\frac{23}{4}\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\\\left(x+\frac{1}{2}\right)^2+\frac{23}{4}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\\\left(x+\frac{1}{2}\right)^2=\frac{-23}{4}\left(loai\right)\end{matrix}\right.\)
Vậy S = {1;-2}
ta có: \(\left(3x-5\right)^2+\left(2-x\right)^3+\left(3-2x\right)^3=0\)
<=>\(\left(5-3x\right)^2+\left(2-x+3-2x\right)\left[\left(2-x\right)^2+\left(2-x\right)\left(3-2x\right)+\left(3-2x\right)^2\right]=0\)
<=>\(\left(5-3x\right)^2+\left(5-3x\right)\left(4-4x+x^2-6+7x-2x^2+9-12x+4x^2\right)=0\)
<=>\(\left(5-3x\right)^{^2}+\left(5-3x\right)\left(7-9x-3x^2\right)=0\)
<=>\(\left(5-3x\right)\left(5-3x+7-9x-3x^2\right)=0\)
<=>\(3.\left(5-3x\right)\left(4-4x-x^2\right)=0\)
Mà 4-4x-x^2>0 nên 5-3x=0 <=>x=5/3
\(\left(x-4\right)^2=\left(2x+1\right)^2\)
\(\Leftrightarrow\left(x-4\right)^2-\left(2x+1\right)^2=0\)
\(\Leftrightarrow\left(x-4-2x-1\right)\left(x-4+2x+1\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(3x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\3x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\3\left(x-1\right)=0\end{cases}}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=5\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\x=1\end{cases}}}\)
Bài 1:
a) \(3x^2-9x=3x\left(x-3\right)\)
b) \(x^2-4x+4=\left(x-2\right)^2\)
c) \(x^2+6x+9-y^2=\left(x+3\right)^2-y^2=\left(x-y+3\right)\left(x+y+3\right)\)
Bài 2:
a) \(101^2-1=\left(101-1\right)\left(101+1\right)=102.100=10200\)
b) \(67^2+66.67+33^2=67^2+2.33.67+33^2\)
\(=\left(67+33\right)^2=100^2=10000\)
Bài 3:
\(x\left(x-3\right)+2\left(x+3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)
Vậy \(x=-2\)hoặc \(x=3\)
B1:
a) \(3x^2-9x=3x.\left(x-3\right)\)
b) \(x^2-4x+4=\left(x-2\right)^2\)
c) \(x^2+6x+9-y^2=\left(x+3\right)^2-y^2=\left(x+3+y\right).\left(x+3-y\right)\)
B2:
a) \(101^2-1=\left(101+1\right).\left(101-1\right)=102.100=10200\)
b) \(67^2+66.67+33^2=67^2+2.33.67+33^2=\left(67+33\right)^2=100^2=10000\)
B3:
\(x\left(x-3\right)+2\left(x-3\right)=0\)
\(\left(x-3\right).\left(x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\x+2=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)
a) (2x2 - x) + 4x - 2 = 0
x(2x - 1) + 2(2x - 1) = 0
(2x - 1)(x + 2) = 0
2x - 1 = 0 hoặc x + 2 = 0
* 2x - 1 = 0
2x = 1
x = \(\frac{1}{2}\)
* x + 2 = 0
x = -2
Vậy x = -2; x = \(\frac{1}{2}\)
b) x2 - 6x + 8 = 0
x2 - 2x - 4x + 8 = 0
(x2 - 2x) + (-4x + 8) = 0
x(x - 2) - 4(x - 2) = 0
(x - 2)(x - 4) = 0
x - 2 = 0 hoặc x - 4 = 0
* x - 2 = 0
x = 2
* x - 4 = 0
x = 4
Vậy x = 2; x = 4
c) x4 - 8x2 - 9 = 0
x4 + x2 - 9x2 - 9 = 0
(x4 - 9x2) + (x2 - 9) = 0
x2(x2 - 9) + (x2 - 9) = 0
(x2 - 9)(x2 + 1) = 0
x2 - 9 = 0 (vì x2 + 1 > 0 với mọi x)
x2 = 9
x = 3 hoặc x = -3
Vậy x = 3; x = -3