Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
a) \(P=\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}}{x-2\sqrt{x}+1}\)
\(P=\left(\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{1}{\sqrt{x}-1}\right).\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}\)
\(P=\frac{1+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}.\frac{\sqrt{x}-1}{\sqrt{x}}\)
\(P=\frac{\sqrt{x}+1}{x}\)
b) \(P>\frac{1}{2}\)
\(\Leftrightarrow\frac{\sqrt{x}+1}{x}>\frac{1}{2}\)
\(\Leftrightarrow\frac{\sqrt{x}+1}{x}-\frac{1}{2}>0\)
\(\Leftrightarrow\frac{\sqrt{x}+1-2x}{x}>0\)
\(\Leftrightarrow\sqrt{x}-2x+1>0\left(x>0\right)\)
\(\Leftrightarrow\sqrt{x}+x^2-2x+1-x^2>0\)
\(\Leftrightarrow\sqrt{x}+x^2+\left(x-1\right)^2>0\left(\forall x>0\right)\)
Vậy P > 1/2 với mọi x> 0 ; x khác 1
Bài 2 :
a) \(K=\left(\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{1}{a-\sqrt{a}}\right):\left(\frac{1}{\sqrt{a}+a}+\frac{2}{a-1}\right)\)
\(K=\left(\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\frac{1}{\sqrt{a}\left(\sqrt{a}+1\right)}+\frac{2}{a-1}\right)\)
\(K=\frac{a-1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{a-1+2\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}\left(a-1\right)\left(\sqrt{a}+1\right)}\)
\(K=\frac{a-1}{\sqrt{a}\left(\sqrt{a}-1\right)}.\frac{\sqrt{a}\left(a-1\right)\left(\sqrt{a}-1\right)}{a-1+2a+2\sqrt{a}}\)
\(K=\frac{\left(a-1\right)^2}{3a+2\sqrt{a}-1}\)
b) \(a=3+2\sqrt{2}=2+2\sqrt{2}+1=\left(\sqrt{2}+1\right)^2\)( thỏa mãn ĐKXĐ )
Thay a vào biểu thức K , ta có :
\(K=\frac{\left(3+2\sqrt{2}-1\right)^2}{3\left(3+2\sqrt{2}\right)+2\sqrt{\left(\sqrt{2}+1\right)^2}-1}\)
\(K=\frac{\left(2+2\sqrt{2}\right)^2}{9+6\sqrt{2}+2\left|\sqrt{2}+1\right|-1}\)
\(K=\frac{\left(2+2\sqrt{2}\right)^2}{8+6\sqrt{2}+2\sqrt{2}+2}\)
\(K=\frac{\left(2+2\sqrt{2}\right)^2}{10+8\sqrt{2}}\)
ta có:\(\left(a+2b\right)^2=\left(1.a+\sqrt{2}.\sqrt{2}b\right)^2\le\left(1+2\right)\left(a^2+2b^2\right)\)( bđt bunhiacopxki)
\(\left(a+2b\right)^2\le3.3c^2=9c^2\)→\(a+2b\le3c\)
lại có:\(\frac{1}{a}+\frac{2}{b}=\frac{1}{a}+\frac{1}{b}+\frac{1}{b}\ge\frac{9}{a+2b}\ge\frac{9}{3c}=\frac{3}{c}\)
dấu = xảyra khi.... a+2b2=3c2(:v)
áp dụng BĐT Cô - si ta được:
\(a+\frac{1}{4}\ge2\sqrt{a.\frac{1}{4}}=\sqrt{a}\)(1)
\(b+\frac{1}{4}\ge2\sqrt{b.\frac{1}{4}}=\sqrt{b}\)(2)
Công hai vế (1) và (2) ta được:
\(a+\frac{1}{4}+b+\frac{1}{4}\ge\sqrt{a}+\sqrt{b}\)
\(\Leftrightarrow a+b+\frac{1}{2}\ge\sqrt{a}+\sqrt{b}\)(điều phải chứng minh)
Dấu"=" xảy ra khi a=b
Đặt t = ab +bc+ ac => a2+ b2+ c2=1 - 2t
theo BĐT AM-GM : ab + bc +ac \(\le\frac{a^2+b^2}{2}+\frac{b^2+c^2}{2}+\frac{c^2+a^2}{2}=a^2+b^2+c^2\)
suy ra : t = ab +bc+ ac = \(\frac{2\left(ab+bc+ac\right)+\left(ab+bc+ac\right)}{3}\le\frac{2\left(ab+bc+ac\right)+\left(a^2+b^2+c^2\right)}{3}=\frac{\left(a+b+c\right)^2}{3}=\frac{1}{3}\)
Từ đó ta đã đưa bài toán trên về dạng đơn giản hơn : CMR : \(\frac{3}{t}+\frac{2}{1-2t}\ge14\)(Với \(0\le t\le\frac{1}{3}\))
\(\Leftrightarrow3\left(1-2t\right)+2t\ge14\left(1-2t\right)\)
\(\Leftrightarrow3-4t\ge14-28t^2\Leftrightarrow3-18t+28t^2\ge0\)
\(\Leftrightarrow3\left(1-3t\right)^2+t^2\ge0\)(Luôn đúng )
=> ĐPCM
Dấu = không xảy ra.
\(VP=\sqrt{\frac{a+\sqrt{a^2-b}}{2}}+\sqrt{\frac{a-\sqrt{a^2-b}}{2}}\)
\(VP^2=\frac{a+\sqrt{a^2-b}}{2}+\frac{a-\sqrt{a^2-b}}{2}+2\sqrt{\frac{\left(a+\sqrt{a^2-b}\right)\left(a-\sqrt{a^2-b}\right)}{2.2}}\)
\(=a+\sqrt{\left[a^2-\left(a^2-b\right)\right]}=a+\sqrt{b}\)
\(\Rightarrow VP=\sqrt{a+\sqrt{b}}=VT\)
(=) \(a^2+1\ge2a\) (nhân 2 vế cho a )
(=) \(\left(a-1\right)^2\ge0\) (luôn đúng với mọi a khác 0 )
=> đpcm
\(=a^2+1>2a\) ( nhân 2 về cho a)
\(=\left(a-1\right)^2>0\)( luôn đúng với mọi a khác 0)
chúc bn học tốt.