K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2019

A B C D M E K

a ) Ta có : \(\widehat{A}=\widehat{D}=\widehat{E}=90^o\left(gt\right)\)

\(\Rightarrow ADME\) là hình chữ nhật ( tứ giác có ba góc vuông )

b ) Ta có : ME là đường trung bình của tam giác ABC 

\(\Rightarrow ME//AB\) và \(ME=\frac{1}{2}AB=\frac{1}{2}.6=3\left(cm\right)\)

\(\Rightarrow AD=ME=3\left(cm\right)\)( cạnh đối hình chữ nhật )
Lại có : \(\hept{\begin{cases}ME//AB\left(cmt\right)\\MB=MC\left(gt\right)\end{cases}}\)

\(\Rightarrow AE=CE=\frac{AC}{2}=\frac{8}{2}=4\left(cm\right)\)

ADME : hình chữ nhật 

\(\Rightarrow A_{ADME}=AD.AE=3.4=12\left(cm^2\right)\)

c ) Dễ thấy AC là đường trung trực của MK

\(\Rightarrow AM=AK\)và \(CM=CK\)

Mà AM = CM \(\left(=\frac{1}{2}BC\right)\) ( \(\Delta ABC\) vuông tại A )

\(\Rightarrow AM=AK=CM=CK\)

\(\Rightarrow AMCK\)là hình thoi ( tứ giác có 4 cạnh bằng nhau )

d ) Ta có : \(ME=\frac{1}{2}AB\)

\(\Rightarrow AB=2ME=MK\)

Hình thoi AMCK là hình vuông \(\Leftrightarrow AC=MK\)

\(\Leftrightarrow AC=AB\) ( vì AB = MK )

\(\Leftrightarrow\Delta ABC\)cân tại A

Mà \(\Delta ABC\) vuông tại A (gt)
Vậy \(\Delta ABC\)vuông cân tại A thì hình thoi AMCK là hình vuông

19 tháng 4 2020

C S N I M O K F A B D H

haizzz , vì mới lớp 8 nên mình chỉ làm được đến câu c, thôi , bạn thông cảm

a, Xét tam giác ABC vuông tại A và HA = HD

- Có \(\widehat{BAC}\)là góc nội tiếp đường tròn O chắn cung BC

- Mà BC là đường kính O

=> \(\widehat{BAC}=90^o\)

=> \(\Delta ABC\perp A\)

Xét \(\Delta OAD\)cân tại O ( Vì OA = OD do A , D cung thuộc O )

- Có AH là đường cao

=> OH là đường trung tuyến \(\Delta OAD\)

=> H là trug điểm AD

=> HA = HD

b, MN // SC , SC tiếp tuyến của (O)

Xét tam giác OSC có : M là trung điểm của OC

                                     N là trung điểm của OS

=> MN là đường TB của \(\Delta OSC\)

=> MN // SC

Mà \(MN\perp OC\left(gt\right)\)

\(\Rightarrow OC\perp SC\)tại S

- Xét đường tròn O có CO là bán kính ( vì \(C\in\left(O\right)\)

\(CO\perp SC\)tại C
=> SC là tiếp tuyến của đường tròn (O)

c, BH .  HC = AF . AK

Xét \(\Delta ABC\perp A\)có :

AH là đường cao 

=> AH2 = BH . HC

Xét đường tròn đường kính AH có F thuộc đường tròn

\(\Rightarrow\widehat{AFH}=90^o\)

\(\Rightarrow HF\perp AK\)tại F

Xét tam giác AHK vuông tại H , ta có : 

HF là đường cao 

=> AH2 = AF . AK

=> BH . HC = AF . AK ( = AH2 )

19 tháng 4 2020

GARENA FREE FIRE

25 tháng 5 2018

Giờ mình ko rảnh và máy tính đanhg hư nên ko làm đc thông cảm nhá

25 tháng 5 2018

HD

image006

Câu 1.

Tự CM.

Câu 2:

Kẻ AO cắt đường tròn tại F

Để ý góc ADE=góc EBC=góc AFC

Mà góc CAF+góc FAC =90°

⇒góc ADE+góc FAC =90°hay AF ⊥ DE.

Vậy đường thẳng kẻ qua A vuông góc DE luôn đi qua điểm cố định O.

Câu 3:

Gọi giao CQ và BP là O’

Dễ thấy góc ABP=góc QCE (cùng bằng 1/2 góc ABD = 1/2 góc ACE)

⇒ góc ABP+góc QCE=90° hay BP ⊥ CQ tại O’

⇒ các ΔBQN,  ΔCMP có đường phân giác đồng thời là đường cao nên cân tại B và C

⇒ O’M=O’P; O’N=O’Q; lại có QN ⊥ MP, nên tứ giác MNPQ là hình thoi

1. Cho đường tròn (O), đường kính AB, dây AM. Kéo dài AM một đoạn MC = AMa) Chứng minh AB = BCb) Gọi N là trung điểm BC. Chứng minh tứ giác BOMN là hình thoi.2. Cho đường tròn (O), đường kính AB, tiếp tuyến Ax. Trên Ax lấy điểm M, vẽ tiếp tuyếnMC với đường tròn (C là tiếp điểm).a) Chứng minh OM // BCb) Từ O vẽ đường thẳng vuông góc AB cắt BC tại N. Chứng minh BOMN là hình bình hànhc) Chứng minh...
Đọc tiếp

1. Cho đường tròn (O), đường kính AB, dây AM. Kéo dài AM một đoạn MC = AM
a) Chứng minh AB = BC
b) Gọi N là trung điểm BC. Chứng minh tứ giác BOMN là hình thoi.
2. Cho đường tròn (O), đường kính AB, tiếp tuyến Ax. Trên Ax lấy điểm M, vẽ tiếp tuyến
MC với đường tròn (C là tiếp điểm).
a) Chứng minh OM // BC
b) Từ O vẽ đường thẳng vuông góc AB cắt BC tại N. Chứng minh BOMN là hình bình hành
c) Chứng minh COMN là hình thang cân
3.Cho đường tròn (O), đường kính AB, tiếp tuyến Ax. Trên Ax lấy điểm M, vẽ tiếp tuyến
MC với đường tròn (C là tiếp điểm).Kẻ CH vuông góc với AB tại H
a) Chứng minh CA là phân giác góc HCM
b) Kẻ CH vuông góc Ax tại K, gọi I là giao điểm của AC và HK. Chứng minh tam giác AIO vuông
c) Chứng minh 3 điểm M, I, O thẳng hàng
Mọi người ơi giúp e vsssssssssssssss.........E hỏi mà hong ai chỉ T.T

2
21 tháng 3 2020

ko làm mà muốn ăn thì chỉ có ăn cứt ăn đầu buồi nhá!

21 tháng 3 2020

Bài 1:

a,

OM là đường trung bình  của tam giác BAC => OM = 1/2*BC

OM = 1/2*AB

=> AB=BC (đpcm).

b, 

Tam giác ABC đều => BC = 2*r(O)

MN là đường trung bình của tam giác ABC => MN = 1/2*AB = r(O) = OM = OB =BN => BOMN là hình thoi.

10 tháng 4 2019

O A C B I M N J

a) Ta có I là trung điểm MN

=> OI vuông MN

Xét tứ giác ABOI có:\(\widehat{ABO}=90^o\)( vì  AB là tiếp tuyến(O; R))

và \(\widehat{AIO}=90^o\)

=> \(\widehat{AIO}+\widehat{ABO}=180^o\)

=> Tứ giác ABOI nội tiếp  (1)

Ta lại có: \(\widehat{ACO}=90^o\)( AC là tiếp tuyến (O;R))

Xét tứ giác ABOC có: \(\widehat{ABO}+\widehat{ACO}=180^o\)

=> Tứ giác ABOC nội tiếp (2)

Như vậy A,B, C, O, I cùng nằm trên môt đường tròn

b) AB=OB  mà AB=AC; OB=OC

=> AB=AC=OB=OC

=> ABOC là hình thoi có \(\widehat{ABO}=90^o\)

=> ABOC là hình vuông

c) Áp dụng định lí piago cho tam giác ABO vuông tại B ta có:

\(AO^2=AB^2+BO^2=R^2+R^2=2R^2\Rightarrow AO=R\sqrt{2}\)

Gọi J là trung điểm AO khi đó các tam giác ABO vuông tại B, ACO vuông tại C đều nhận  AO là cạnh huyền

=> JA=JB=JC=JO

=> J là tâm đường tròn ngoại tiếp ABOC

như vậy bán kính đường tròn ngoại tiếp ABOC bằng \(JA=\frac{1}{2}AO=\frac{R\sqrt{2}}{2}\)

Có bán kính rồi em tính diện tích và chu vi đi nhé!