K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2022

a:Xét tứ giác AIHK có

AI//HK

AK//HI

góc IAK=90 độ

Do đó: AIHK là hình chữ nhật

b: Để AHIK là hình vuông thì AI là phân giác của góc BAC

=>I là chân đường phân giác kẻ từ A xuống BC

20 tháng 12 2022

1: Xét ΔABC có AD/AB=AE/AC

nên DE//BC và DE=1/2BC

=>BDEC là hình thang

2: Xét ΔCAB có CE/CA=CF/CB

nên EF//AB và EF=AB/2

=>EF//AD và EF=AD

=>ADFE là hình bình hành

mà góc EAD=90 độ

nên ADFE là hình chữ nhật

3: Xét tứ giác AFCK có

E là trung điểm chung của AC và FK

FA=FC

Do đó: AFCK là hình thoi

`# \text {Ryo}`

`2,`

`a)`

`x^3 -9x^2 + 27x - 27`

`= (x)^3 - 3*x^2 * 3 + 3*x*3^2 - (3)^3`

`= (x - 3)^3`

`b)`

`- (x^3)/8 + 3/4x^2 - 3/2x + 1`

`= - ( (x^3)/8 - 3/4x^2 + 3/2x - 1)`

`= - [ (x/2)^3 - 3*(x/2)^2 * 1 + 3*x/2*1^2 - 1^3]`

`= - (x/2 - 1)^3`

`c)`

Phiền bạn ghi lại đề giúp mình với ạ! Số mũ của biến 3 số sau mình kh đọc được.

`3,`

`a)`

`A = x^3 - 6x^2 + 12x - 8`

`= (x)^3 - 3*x^2*2 + 3*x*2^2 - (2)^3`

`= (x - 2)^3`

`b)`

`B = 1 - (3x)/2 + (3x^2)/4 - (x^3)/8` phải k c? (Mình thấy biến phần cuối hơi mờ).

`= 1^3 - 3*1^2*x/2 + 3* 1 * (x/2)^2 - (x/2)^3`

`= (1 - x/2)^3`

__

Cả bài 2 và 3, bạn sử dụng CT:

`A^3 - 3A^2B + 3AB^2 - B^3 = (A - B)^3`

14 tháng 9 2023

2, c là x\(\dfrac{3}{2}x^4y+\dfrac{3}{4}x^2y^2-\dfrac{1}{8}y^3\)
còn 3 b là đúm rùi ạ

HQ
Hà Quang Minh
Giáo viên
1 tháng 8 2023

Bài 1:

\(a,x^2-y^2-2x+2y=\left(x-y\right)\left(x+y\right)-2\left(x-y\right)=\left(x-y\right)\left(x+y-2\right)\)

\(b,2x+2y-x^2-xy=2\left(x+y\right)-x\left(x+y\right)=\left(2-x\right)\left(x+y\right)\)

\(c,3a^2-6ab+3b^2-12c^2=3\left(a-b\right)^2-12c^2=3\left[\left(a-b\right)^2-4c^2\right]=3\left(a-b-2c\right)\left(a-b+2c\right)\)

\(d,x^2-25+y^2+2xy=\left(x-y\right)^2-25=\left(x-y-5\right)\left(x-y+5\right)\)

HQ
Hà Quang Minh
Giáo viên
1 tháng 8 2023

Bài 1:

\(e,a^2+2ab+b^2-ac-bc=\left(a+b\right)^2-c\left(a+b\right)=\left(a+b-c\right)\left(a+b\right)\)

\(f,x^2-2x-4y^2-4y=\left(x-1\right)^2-\left(2y+1\right)^2=\left(x-2y-2\right)\left(x+2y\right)\)

\(g,x^2y-x^3-9y+9x=x^2\left(y-x\right)-9\left(y-x\right)=\left(x-3\right)\left(x+3\right)\left(y-x\right)\)

\(h,x^2\left(x-1\right)+16\left(1-x\right)=\left(x-1\right)\left(x-4\right)\left(x+4\right)\)

18 tháng 7 2023

1) \(\left(x+\dfrac{1}{3}\right)^3=x^3+3.x^2.\dfrac{1}{3}+3.x.\left(\dfrac{1}{3}\right)^2+\left(\dfrac{1}{3}\right)^3\)

\(=x^3+x^2+\dfrac{x}{3}+\dfrac{1}{27}\)

2) \(\left(2x+y^2\right)^3=\left(2x\right)^3+3.\left(2x\right)^2.y^2+3.2x.\left(y^2\right)^2+\left(y^2\right)^3\)

\(=8x^3+12x^2y^2+6xy^4+y^6\)

3) \(\left(\dfrac{1}{2}x^2+\dfrac{1}{3}y\right)^3=\left(\dfrac{1}{2}x^2\right)^3+3.\left(\dfrac{1}{2}x^2\right)^2.\dfrac{1}{3}y+3.\dfrac{1}{2}x^2.\left(\dfrac{1}{3}y\right)^2+\left(\dfrac{1}{3}y\right)^3\)

\(=\dfrac{1}{8}x^6+\dfrac{1}{4}x^4y+\dfrac{1}{6}x^2y^2+\dfrac{1}{27}y^3\)

4) \(\left(3x^2-2y\right)^3=\left(3x^2\right)^3-3.\left(3x^2\right)^2.2y+3.3x^2.\left(2y\right)^2-\left(2y\right)^3\)

\(=27x^6-54x^4y+36x^2y^2-8y^3\)

5) \(\left(\dfrac{2}{3}x^2-\dfrac{1}{2}y\right)^3=\left(\dfrac{2}{3}x^2\right)^3-3.\left(\dfrac{2}{3}x^2\right)^2.\dfrac{1}{2}y+3.\dfrac{2}{3}x^2.\left(\dfrac{1}{2}y\right)^2-\left(\dfrac{1}{2}y\right)^3\)

\(=\dfrac{8}{27}x^6-\dfrac{1}{3}x^4y+\dfrac{1}{2}x^2y^2-\dfrac{1}{8}y^3\)

6) \(\left(2x+\dfrac{1}{2}\right)^3=\left(2x\right)^3+3.\left(2x\right)^2.\dfrac{1}{2}+3.2x.\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3\)

\(=8x^3+6x^2+\dfrac{3}{2}x+\dfrac{1}{8}\)

7) \(\left(x-3\right)^3=x^3-3.x^2.3+3.x.3^2-3^3\)

\(=x^3-9x^2+27x-27\)

18 tháng 7 2023

8) \(\left(x+1\right)\left(x^2-x+1\right)\)

\(=\left(x+1\right)\left(x^2-x.1+1^2\right)\)

\(=x^3+1^3\)

\(=x+1\)

9) \(\left(x-3\right)\left(x^2+3x+9\right)\)

\(=\left(x-3\right)\left(x^2+x.3+3^2\right)\)

\(=x^3-3^3\)

\(=x^3-27\)

10) \(\left(x-2\right)\left(x^2+2x+4\right)\)

\(=\left(x-2\right)\left(x^2+x.2+2^2\right)\)

\(=x^3-2^3\)

\(=x^3-8\)

11) \(\left(x+4\right)\left(x^2-4x+16\right)\)

\(=\left(x+4\right)\left(x^2-x.4+4^2\right)\)

\(=x^3+4^3\)

\(=x^3+64\)

12) \(\left(x-3y\right)\left(x^2+3xy+9y^2\right)\)

\(=\left(x-3y\right)\left[x^2+x.3y+\left(3y\right)^2\right]\)

\(=x^3-\left(3y\right)^3\)

\(=x^3-27y^3\)

13) \(\left(x^2-\dfrac{1}{3}\right)\left(x^4+\dfrac{1}{3}x^2+\dfrac{1}{9}\right)\)

\(=\left(x^2-\dfrac{1}{3}\right)\left[\left(x^2\right)^2+x^2.\dfrac{1}{3}+\left(\dfrac{1}{3}\right)^2\right]\)

\(=\left(x^2\right)^3-\left(\dfrac{1}{3}\right)^3\)

\(=x^6-\dfrac{1}{27}\)

14) \(\left(\dfrac{1}{3}x+2y\right)\left(\dfrac{1}{9}x^2-\dfrac{2}{3}xy+4y^2\right)\)

\(=\left(\dfrac{1}{3}x+2y\right)\left[\left(\dfrac{1}{3}x\right)^2-\dfrac{1}{3}x.2y+\left(2y\right)^2\right]\)

\(=\left(\dfrac{1}{3}x\right)^3+\left(2y\right)^3\)

\(=\dfrac{1}{27}x^3+8y^3\)

Bài 1: 

a: \(x^3-10x^2+25x\)

\(=x\left(x^2-10x+25\right)\)

\(=x\left(x-5\right)^2\)

b: \(3x-3y-x^2+2xy-y^2\)

\(=3\left(x-y\right)-\left(x-y\right)^2\)

\(=\left(x-y\right)\left(3-x+y\right)\)

c: \(x^3+x-y^3-y\)

\(=\left(x-y\right)\left(x^2+xy+y^2\right)+\left(x-y\right)\)

\(=\left(x-y\right)\left(x^2+xy+y^2+1\right)\)

a) x\(^2\) - 10x + 9 =0

x\(^2\) - 2x . 5 + 25 = 16

(x - 5)\(^2\) = 4\(^2\)

=> x - 5 = 4

x = 9

Vậy x = 9

b) x\(^2\) - 7x + 6 = 0

x\(^2\) - 2x . 3,5 + 12,25 = 6,25

(x - 3,5)\(^2\) = 2,5\(^2\)

=> x - 3,5 = 2,5

x = 6

Vậy x = 6

c) x\(^2\) + 13x + 12 = 0

x\(^2\) + 2x . 6,5 + 42,25 = 30,25

(x + 6,5)\(^2\) = 5,5\(^2\)

=> x + 6,5 = 5,5

x = -1

Vậy x = -1

d) x\(^2\) - 24x + 23 = 0

x\(^2\) - 2x . 12 + 244 = 121

(x - 12)\(^2\) = 11\(^2\)

=> x - 12 = 11

x = 23

Vậy x = 23

e) 3x\(^2\) + 14x + 8 = 0

3x\(^2\) + 2 . \(\sqrt{3}\)x . \(\frac{7}{\sqrt{3}}\) + \(\frac{49}{3}\) = \(\frac{25}{3}\)

(\(\sqrt{3}\)x + \(\frac{7}{\sqrt{3}}\))\(^2\) = \(\left(\frac{5}{\sqrt{3}}\right)^2\)

=> \(\sqrt{3}\)x + \(\frac{7}{\sqrt{3}}\) = \(\frac{5}{\sqrt{3}}\)

=> \(\sqrt{3}\)x  = \(\frac{-2}{\sqrt{3}}\)

=> x = \(\frac{-2}{3}\)