K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2019

áp dụng công thức \(\frac{a}{b}=\frac{1}{k+1}+\frac{a-r}{b\left(k-1\right)}\)(với k là thương của a chia cho b;r là số dư )

25 tháng 5 2019

Vì a,b,c có vai trò bình đẳng 

nên giả sử \(a\le b\le c\)

=> \(\frac{1}{a}\ge\frac{1}{b}\ge\frac{1}{c}\)

Mà \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)

=> \(1\le\frac{3}{a}\)

=> \(a\le3\)

Mà a là số nguyên tố 

=>\(a\in\left\{2;3\right\}\)

+ a=2

\(\frac{1}{b}+\frac{1}{c}=\frac{1}{2}\)

=> \(\frac{1}{2}\le\frac{2}{b}\)=> \(b\le4\)=> \(b\in\left\{2;3\right\}\)

Thay vào ta được c=6(loại)

+ a=3

=> \(\frac{2}{3}\le\frac{2}{b}\)=> \(b\le3\)=> \(b\in\left\{2;3\right\}\)

Thay vào được c=3

Vậy a=b=c=3

Do mình chờ duyệt lâu quá nên các bạn thông cảm giả được báo cho mình

A PHONES

tables                chopsiks      wardrobes       bed                   fridges       dishes

desks                 house              rooms           lamps            posters        shinks

toilets                 qpartments     laptops          buildings           books        clocks

  /s/   

      /is       /z/
  
 

a: \(A\cap B=\left(-3;1\right)\)

\(A\cup B\)=[-5;4]

A\B=[1;4]

\(C_RA\)=R\A=(-∞;-3]\(\cap\)(4;+∞)

b: C={1;-1;5;-5}

\(B\cap C=\left\{-5;-1\right\}\)

Các tập con là ∅; {-5}; {-1}; {-5;-1}

25 tháng 5 2023

 Bạn ơi, nếu như vậy thì thầy mình sẽ bắt mình chứng minh là chỉ có 2 số 3 với 5 là 2 số có dạng \(2^n-1\) với \(2^n+1\) đó bạn. Nếu bạn không phiền thì chứng minh giúp mình với nhé. Mình cảm ơn bạn trước.

NV
9 tháng 1 2023

Với \(a=b\) thì \(\left(a^2+1\right)^2\) và \(c^2\) là 2 số tự nhiên liên tiếp đều chính phương nên \(c=0;a^2+1=1\) (ktm)

Với \(a\ne b\), ko mất tính tổng quát giả sử \(a< b\)

\(\left(a^2+1\right)\left(b^2+1\right)=c^2+1\Leftrightarrow a^2\left(b^2+1\right)=\left(c-b\right)\left(c+b\right)\) (1)

Mà \(b^2+1\) là SNT \(\Rightarrow c-b\) hoặc \(c+b\) chia hết \(b^2+1\)

Do \(a< b\Rightarrow\left(b^2+1\right)^2>c^2+1\Rightarrow b^2>c\) (2)

Nếu \(c-b\) chia hết \(b^2+1\Rightarrow c-b\ge b^2+1\Rightarrow c\ge b^2+b+1>b^2\) mâu thuẫn (2)

\(\Rightarrow c+b\) chia hết \(b^2+1\) \(\Rightarrow c+b=k\left(b^2+1\right)\Rightarrow k\left(b^2+1\right)< b^2+b\)

\(\Rightarrow k< \dfrac{b^2+b}{b^2+1}< 2\Rightarrow k=1\)

\(\Rightarrow c=b^2-b+1\)

Thế vào (1) \(\Rightarrow a^2\left(b^2+1\right)=\left(b-1\right)^2\left(b^2+1\right)\Rightarrow a^2=\left(b-1\right)^2\)

\(\Rightarrow a=b-1\)

\(\Rightarrow\left(b-1\right)^2+1\) và \(b^2+1\) cùng là số nguyên tố

- Với \(b=1\) không thỏa

- Với \(b=2\) thỏa

- Với \(b>2\) do \(b^2+1\) nguyên tố \(\Rightarrow b^2+1\) lẻ \(\Rightarrow b\) chẵn

\(\Rightarrow\left(b-1\right)^2+1\) chẵn \(\Rightarrow\) ko là SNT \(\Rightarrow\) không thỏa

Vậy \(b=2;a=1;c=3\)