K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2022

a) Để A xác định 

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x-4\ne0\\\sqrt{x}-2\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne4\\\sqrt{x}\ne2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne4\\x\ne4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)

Vậy với \(\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\) thì A xác định 

b) \(A=\dfrac{x}{x-4}+\dfrac{1}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\)

\(\Leftrightarrow A=\dfrac{x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\dfrac{1}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\)

\(\Leftrightarrow A=\dfrac{x+\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(\Leftrightarrow A=\dfrac{2\sqrt{x}+x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(\Leftrightarrow A=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)

Để \(A=\dfrac{-1}{3}\)

\(\Rightarrow\dfrac{\sqrt{x}}{\sqrt{x}-2}=\dfrac{-1}{3}\)

\(\Leftrightarrow3\sqrt{x}=-\sqrt{x}+2\)

\(\Leftrightarrow4\sqrt{x}=2\)

\(\Leftrightarrow\sqrt{x}=\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{4}\left(tm\right)\)

31 tháng 7 2018

hình như đề bài bị sai số thì phải bạn ạ

mình giải cứ bị lệch số ấy

21 tháng 6 2021

`a)(2sqrtx-9)/(x-5sqrtx+6)-(sqrtx+3)/(sqrtx-2)-(2sqrtx+1)/(3-sqrtx)(x>=0,x ne 4,x ne 9)`

`=(2sqrtx-9)/(x-5sqrtx+6)-(sqrtx+3)/(sqrtx-2)+(2sqrtx+1)/(sqrtx-3)`

`=(2sqrtx-9+(sqrtx-3)(sqrtx+3)+(2sqrtx+1)(sqrtx-2))/(x-5sqrtx+6)`

`=(2sqrtx-9+x-9+2x-3sqrtx-2)/(x-5sqrtx+6)`

`=(3x-sqrtx-20)/

21 tháng 6 2021

Lỗi nhẹ :v

11 tháng 7 2018

\(a.P=\dfrac{1}{\sqrt{x}+2}-\dfrac{5}{x-\sqrt{x}-6}-\dfrac{\sqrt{x}-2}{3-\sqrt{x}}=\dfrac{\sqrt{x}-3-5+\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}=\dfrac{\sqrt{x}-8+x-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}=\dfrac{\sqrt{x}+4}{\sqrt{x}+2}\) ( x ≥ 0 ; x # 9 )

\(b.\) \(P=\dfrac{\sqrt{x}+4}{\sqrt{x}+2}=\dfrac{2\left(\sqrt{x}+2\right)-\sqrt{x}}{\sqrt{x}+2}=2-\dfrac{\sqrt{x}}{\sqrt{x}+2}\text{≤}2\)

\(P_{Max}=2."="\)\(x=0\)

13 tháng 6 2018

đkxđ: x≥0; x≠4

\(A=\dfrac{1}{2+\sqrt{x}}+\dfrac{1}{2-\sqrt{x}}-\dfrac{2\sqrt{x}}{4-x}\)

\(=\dfrac{2-\sqrt{x}}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}+\dfrac{2+\sqrt{x}}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}-\dfrac{2\sqrt{x}}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\)

\(=\dfrac{4-2\sqrt{x}}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}=\dfrac{2\left(2-\sqrt{x}\right)}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}=\dfrac{2}{2+\sqrt{x}}\)

+) A = 1/4 <=> \(\dfrac{2}{2+\sqrt{x}}=\dfrac{1}{4}\Leftrightarrow2+\sqrt{x}=8\Leftrightarrow\sqrt{x}=6\Leftrightarrow x=36\)(tm)

Vậy x = 36

13 tháng 6 2018

đkxđ \(\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)

\(A=\dfrac{2+\sqrt{x}+2-\sqrt{x}-2\sqrt{x}}{\left(\sqrt{x}+2\right)\left(2-\sqrt{x}\right)}\)

\(A=\dfrac{4-2\sqrt{x}}{\left(\sqrt{x}+2\right)\left(2-\sqrt{x}\right)}\)

\(A=\dfrac{2}{\sqrt{x}+2}\)

để \(A=\dfrac{1}{4}\)

\(\Leftrightarrow\dfrac{2}{\sqrt{x}+2}=\dfrac{1}{4}\)

\(\Leftrightarrow\sqrt{x}+2=8\)

\(\Leftrightarrow x=36\left(tm\right)\)

vậy tại x=36 thì A=1/4

26 tháng 2 2022

\(đk:\left\{{}\begin{matrix}\Delta\ge0\\0< x1\le x2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5^2-4\left(-m^2+m+6\right)\ge0\\\left\{{}\begin{matrix}x1+x2>0\\x1x2>0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4m^2-4m+1=\left(2m-1\right)^2\ge0\left(đúng\right)\\\left\{{}\begin{matrix}5>0đúng\\-m^2+m+6>0\Leftrightarrow-2< m< 3\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow-2< m< 3\)

\(\Rightarrow\dfrac{1}{\sqrt{x1}}+\dfrac{1}{\sqrt{x2}}=\dfrac{3}{2}\Leftrightarrow\dfrac{\sqrt{x1}+\sqrt{x2}}{\sqrt{x1x2}}=\dfrac{3}{2}\)

\(\Leftrightarrow\dfrac{x1+x2+2\sqrt{x1x2}}{x1x2}=\dfrac{9}{4}\Leftrightarrow\dfrac{5+2\sqrt{-m^2+m+6}}{-m^2+m+6}=\dfrac{9}{4}\)

\(đặt::\sqrt{-m^2+m+6}=t\ge0\Rightarrow\dfrac{5+2t}{t^2}=\dfrac{9}{4}\)

\(\Rightarrow9t^2-8t-20=0\Leftrightarrow\left[{}\begin{matrix}t=2\\t=-\dfrac{10}{9}\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{-m^2+m+6}=2\Leftrightarrow\left[{}\begin{matrix}m=2\left(tm\right)\\m=-1\left(tm\right)\end{matrix}\right.\)

2 tháng 10 2021

a) \(đk:\left\{{}\begin{matrix}x\ge0\\\sqrt{x}\ne2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)

b) \(x=3+2\sqrt{2}\Rightarrow\sqrt{x}=\sqrt{3+2\sqrt{2}}=\sqrt{\left(\sqrt{2}+1\right)^2}=\sqrt{2}+1\)

\(A=\dfrac{2\sqrt{x}-1}{\sqrt{x}-2}=\dfrac{2\left(\sqrt{2}+1\right)-1}{\sqrt{2}+1-2}=\dfrac{2\sqrt{2}+1}{\sqrt{2}-1}\)

c) \(A=\dfrac{2\sqrt{x}-1}{\sqrt{x}-2}=\dfrac{1}{2}\)

\(\Leftrightarrow4\sqrt{x}-2=\sqrt{x}-2\Leftrightarrow3\sqrt{x}=0\Leftrightarrow x=0\left(tm\right)\)

d) \(A=\dfrac{2\sqrt{x}-1}{\sqrt{x}-2}>2\)

\(\Leftrightarrow2\sqrt{x}-1>2\sqrt{x}-4\Leftrightarrow-1>-4\left(đúng\forall x\right)\)

e) \(A=\dfrac{2\sqrt{x}-1}{\sqrt{x}-2}=\dfrac{2\left(\sqrt{x}-2\right)}{\sqrt{x}-2}+\dfrac{3}{\sqrt{x}-2}=2+\dfrac{3}{\sqrt{x}-2}\in Z\)

\(\Rightarrow\sqrt{x}-2\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)

Do \(x\ge0\)

\(\Rightarrow x\in\left\{1;9;25\right\}\)

a: ĐKXĐ: \(\left\{{}\begin{matrix}a>=0\\a< >1\end{matrix}\right.\)

\(A=\dfrac{1}{2\left(\sqrt{a}+1\right)}-\dfrac{1}{2\left(\sqrt{a}-1\right)}+\dfrac{a^2+1}{a^2-1}\)

\(=\dfrac{\sqrt{a}-1-\sqrt{a}-1}{2\left(a-1\right)}+\dfrac{a^2+1}{a^2-1}\)

\(=\dfrac{-1}{a-1}+\dfrac{a^2+1}{a^2-1}\)

\(=\dfrac{-a-1+a^2+1}{\left(a-1\right)\left(a+1\right)}=\dfrac{a^2-a}{\left(a-1\right)\left(a+1\right)}=\dfrac{a}{a+1}\)

b: Để A-1/3<0 thì \(\dfrac{a}{a+1}-\dfrac{1}{3}< 0\)

=>3a-a-1<0

=>2a-1<0

hay 0<a<1/2

9 tháng 8

P=\(\dfrac{\sqrt{2}.a}{\sqrt{\left(a^2+\left(b+c\right)^2\right)\left(1+1\right)}}+\dfrac{\sqrt{2}.b}{\sqrt{\left(b^2+\left(a+c\right)^2\right)\left(1+1\right)}}+\dfrac{\sqrt{2}.c}{\sqrt{\left(c^2+\left(b+a\right)^2\right)\left(1+1\right)}}\)>=\(\dfrac{\sqrt{2}.a}{\sqrt{\left(a+b+c\right)^2}}+\dfrac{\sqrt{2}.b}{\sqrt{\left(a+b+c\right)^2}}+\dfrac{\sqrt{2}.c}{\sqrt{\left(a+b+c\right)^2}}\)>=\(\sqrt{2}\)

9 tháng 8

nhầm dấu tí là dấu lớn hơn bằng còn cách lm thì đúng nhé