Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
Ta có :
\(\left(ac+bd\right)^2+\left(ad-bc\right)^2\)
\(=a^2c^2+2acbd+b^2d^2+a^2d^2-2adbc+b^2c^2\)
\(=(a^2c^2+b^2c^2)+\left(b^2d^2+a^2d^2\right)+\left(2abcd-2abcd\right)\)
\(=\left(a^2+b^2\right)c^2+\left(b^2+a^2\right)d^2\)
\(=\left(a^2+b^2\right)\left(c^2+d^2\right)\)
=> đpcm
Bài 1.
Ta có
VP = a2c2 + a2d2 + b2c2 + b2d2
= ( a2c2 + 2abcd + b2d2 ) + ( a2d2 - 2abcd + b2c2 )
= ( ab + bd )2 + ( ad - bc )2 = VT ( đpcm )
Bài 2.
a) ( a + b )2 = a2 + b2
<=> a2 + 2ab + b2 = a2 + b2
<=> a2 + 2ab + b2 - a2 - b2 = 0
<=> 2ab = 0
<=> ab = 0
Với a = 0 => nghiệm đúng với mọi b
Với b = 0 => nghiệm đúng với mọi a
b) ( a - b )2 = a2 - b2
<=> a2 - 2ab + b2 = a2 - b2
<=> a2 - 2ab + b2 - a2 + b2 = 0
<=> 2b2 - 2ab = 0
<=> 2b( b - a ) = 0
Với b = 0 => nghiệm đúng với mọi a
Với a = 0 => b = 0
Nghiệm đúng với mọi b = a
Bài 3.
A = ( a + b + c )2 - ( a + b )2 - c2
= [ ( a + b ) + c ]2 - ( a2 + 2ab + b2 ) - c2
= ( a + b )2 + 2( a + b )c + c2 - a2 - 2ab - b2 - c2
= a2 + 2ab + b2 + 2ac + 2bc - a2 - 2ab - b2
= 2ac + 2bc = 2c( a + b )
B = ( a + b + c )2 - ( b + c )2 - 2ab - 2ac
= [ ( a + b ) + c ]2 - ( b2 + 2bc + c2 ) - 2ab - 2ac
= ( a + b )2 + 2( a + b )c + c2 - b2 - 2bc - c2 - 2ab - 2ac
= a2 + 2ab + b2 + 2ac + 2bc - b2 - 2bc - 2ab - 2ac
= a2
Bài 1:
Ta có: \(A=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{256}+1\right)+1\)
\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{256}+1\right)+1\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{256}+1\right)+1\)
\(=\left(2^4-1\right)\left(2^4+1\right)...\left(2^{256}+1\right)+1\)
\(............................\)
\(A=\left[\left(2^{256}\right)^2-1\right]+1=2^{512}\)
a: \(=a^2+2a\left(b-c\right)+\left(b-c\right)^2+a^2-2a\left(b-c\right)+\left(b-c\right)^2-2\left(b-c\right)^2\)
\(=2a^2+2\left(b-c\right)^2-2\left(b-c\right)^2=2a^2\)
b: \(=a^2+2a\left(b+c\right)+\left(b+c\right)^2+a^2-2a\left(b+c\right)+\left(b+c\right)^2+\left(b-c-a\right)^2+\left(c-a-b\right)^2\)
\(=2a^2+2\left(b+c\right)^2+\left(a-b+c\right)^2+\left(a+b-c\right)^2\)
\(=2a^2+2\left(b+c\right)^2+a^2-2a\left(b-c\right)+\left(b-c\right)^2+a^2+2a\left(b-c\right)+\left(b-c\right)^2\)
\(=2a^2+2\left(b+c\right)^2+2a^2+2\left(b-c\right)^2\)
\(=4a^2+2\left(b^2+2bc+c^2+b^2-2bc+c^2\right)\)
\(=4a^2+4b^2+4c^2\)
a) Ta có : x(x + 4)(x - 4) - (x2 + 1)(x2 - 1)
= x(x2 - 16) - (x4 - 1)
= x3 - 16x - x4 + 1
= x(x2 - 16 - x3) + 1
\(a,x.\left(x+4\right)\left(x-4\right)-\left(x^2+1\right)\left(x^2-1\right)=x\left(x^2-16\right)-x^4+1=x^3-16x=x^4+1\)
a , áp dụng a2 - b2 = ( a +b) ( a - b ) ta được
( a2 + b 2 - c2 + a 2 - b 2 + c2 ) ( a2 + b 2 - c2 - a2 + b2 - c2 )
= 2 a2 ( 2b2- 2c2) = 4a2b2- 4a2c2
b , ( a + b + c )2 + ( a + b -c ) 2 - 2 ( a +b )2
= ( a + b )2 + 2c ( a + b ) + c 2 + ( a +b )2 - 2c ( a +b ) + c2 - 2 ( a + b )2 = 2c2
c, ((a + b ) +c )2 + ( ( a - b ) +c )2 + ( ( a +b) -c )2 + ( c - ( a +b ))
= ( a + b )2 +2c ( a + b ) + c2 ( a - b ) 2 + 2c ( a-b ) + c 2 + ( a +b) 2 - 2c ( a + b ) + c 2 + c 2 - 2c ( a - b ) + ( a -b )2
= 2 ( a + b )2 + 2 ( a -b )2 + 4c 2
= 2 ( a2 + 2ab + b2 ) + 2 ( a2 - 2ab + b2 ) + 4c2
= 4 ( a2 + b2 + c2 )
Bài 2:
a) \(VP=\left(a+b\right)^3-3ab\left(a+b\right)\)
\(=a^3+b^3+3ab\left(a+b\right)-3ab\left(a+b\right)\)
\(=a^3+b^3=VT\) (đpcm)
b) \(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
\(=a^3+ab^2+ac^2-a^2b-abc-a^2c+a^2b+b^3+bc^2-ab^2-b^2c-abc\)\(+a^2c+b^2c+c^3-abc-bc^2-ac^2\)
\(=a^3+b^3+c^3-3abc\)
Bài 1:
\(N=\frac{x\left|x-2\right|}{x^2+8x-20}+12x-3\)
\(=\frac{x\left|x-2\right|}{\left(x-2\right)\left(x+10\right)}+12x-3\)
Nếu \(x\ge2\)thì: \(N=\frac{x\left(x-2\right)}{\left(x-2\right)\left(x+10\right)}+12x-3\)
\(=\frac{x}{x+10}+12x+3\) (lm tiếp nhé)
Nếu \(x< 2\) thì: \(N=\frac{x\left(2-x\right)}{\left(x-2\right)\left(x+10\right)}+12x-3\)
\(=\frac{-x}{x+10}+12x-3\) (lm tiếp nhé)
đặt a - b-c=x; b-c-a=y; c-a-b=z
=> a + b + c = ...
Thay vào ròi lm tiếp nha
Bài làm:
Đặt \(\hept{\begin{cases}a-b-c=x\\b-c-a=y\\c-a-b=z\end{cases}}\)=> \(a+b+c=-\left(x+y+z\right)\)
Thay vào:
Bt = \(x^2+y^2+z^2-\left(x+y+z\right)^2\)
\(=x^2+y^2+z^2-x^2-y^2-z^2-2\left(xy+yz+zx\right)\)
\(=-2\left(xy+yz+zx\right)\)
Xét: \(xy=\left(a-b-c\right)\left(b-c-a\right)=\left(b+c-a\right)\left(c+a-b\right)\)
\(=\left[c-\left(a-b\right)\right]\left[c+\left(a-b\right)\right]\)
\(=c^2-\left(a-b\right)^2\)
\(=c^2-a^2+2ab-b^2\)
Tương tự: \(yz=a^2-b^2+2bc-c^2\) ; \(zx=b^2-c^2+2ca-a^2\)
=> \(-2\left(xy+yz+zx\right)=2\left(a^2+b^2+c^2-2ab-2bc-2ca\right)\)