Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,VT=\left(a^2+b^2\right)\left(c^2+d^2\right)=a^2c^2+b^2c^2+a^2d^2+b^2d^2\)
\(VP=\left(ac+bd\right)^2+\left(ad-bc\right)^2=a^2c^2+2abcd+b^2d^2+a^2d^2-2abcd+b^2c^2=a^2c^2+b^2c^2+a^2d^2+b^2d^2\)
\(\Rightarrow VT=a^2c^2+b^2c^2+a^2d^2+b^2d^2=VP\left(đpcm\right)\)
b, Tham khảo:Chứng minh hằng đẳng thức:(a+b+c)3= a3 + b3 + c3 + 3(a+b)(b+c)(c+a) - Hoc24
\(\left(a+b+c\right)^2=a^2+b^2+c^2\Leftrightarrow ab+bc+ca=0\)
\(\Rightarrow a^3b^3+b^3c^3+c^3a^3=3a^2b^2c^2\)
Ta có:
\(\dfrac{bc}{a^2}+\dfrac{ac}{b^2}+\dfrac{ab}{c^2}=\dfrac{a^3b^3+b^3c^3+c^3a^3}{a^2b^2c^2}=\dfrac{3a^2b^2c^2}{a^2b^2c^2}=3\)
a) \(\left(a+b+c\right)^2+a^2+b^2+c^2\)
\(=a^2+b^2+c^2+2ab+2bc+2ca+a^2+b^2+c^2\)
\(=a^2+2ab+b^2+b^2+2bc+c^2+c^2+2ca+a^2\)
\(=\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2\)
b) \(\left(a+b+c\right)^3-a^3-b^3-c^3\)
\(=\left(b+c\right)\left[\left(a+b+c\right)^2+\left(a+b+c\right)a+a^2\right]-\left(b+c\right)\left(b^2+bc+c^2\right)\)
\(=\left(b+c\right)\left(3a^2+3ab+3bc+3ac\right)\)
\(=3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Bài 1 :
Ta có :
\(\left(ac+bd\right)^2+\left(ad-bc\right)^2\)
\(=a^2c^2+2acbd+b^2d^2+a^2d^2-2adbc+b^2c^2\)
\(=(a^2c^2+b^2c^2)+\left(b^2d^2+a^2d^2\right)+\left(2abcd-2abcd\right)\)
\(=\left(a^2+b^2\right)c^2+\left(b^2+a^2\right)d^2\)
\(=\left(a^2+b^2\right)\left(c^2+d^2\right)\)
=> đpcm
Bài 1.
Ta có
VP = a2c2 + a2d2 + b2c2 + b2d2
= ( a2c2 + 2abcd + b2d2 ) + ( a2d2 - 2abcd + b2c2 )
= ( ab + bd )2 + ( ad - bc )2 = VT ( đpcm )
Bài 2.
a) ( a + b )2 = a2 + b2
<=> a2 + 2ab + b2 = a2 + b2
<=> a2 + 2ab + b2 - a2 - b2 = 0
<=> 2ab = 0
<=> ab = 0
Với a = 0 => nghiệm đúng với mọi b
Với b = 0 => nghiệm đúng với mọi a
b) ( a - b )2 = a2 - b2
<=> a2 - 2ab + b2 = a2 - b2
<=> a2 - 2ab + b2 - a2 + b2 = 0
<=> 2b2 - 2ab = 0
<=> 2b( b - a ) = 0
Với b = 0 => nghiệm đúng với mọi a
Với a = 0 => b = 0
Nghiệm đúng với mọi b = a
Bài 3.
A = ( a + b + c )2 - ( a + b )2 - c2
= [ ( a + b ) + c ]2 - ( a2 + 2ab + b2 ) - c2
= ( a + b )2 + 2( a + b )c + c2 - a2 - 2ab - b2 - c2
= a2 + 2ab + b2 + 2ac + 2bc - a2 - 2ab - b2
= 2ac + 2bc = 2c( a + b )
B = ( a + b + c )2 - ( b + c )2 - 2ab - 2ac
= [ ( a + b ) + c ]2 - ( b2 + 2bc + c2 ) - 2ab - 2ac
= ( a + b )2 + 2( a + b )c + c2 - b2 - 2bc - c2 - 2ab - 2ac
= a2 + 2ab + b2 + 2ac + 2bc - b2 - 2bc - 2ab - 2ac
= a2