Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
dùng thước đo và so sánh BH và HC nếu ab = ac thì có thể suy ra HB = HC không
\(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0\Rightarrow a^2+b^2+c^2+2ab+2ac+2bc=0\)
\(\Rightarrow2ac+2bc+2ab=-14\)
\(\Rightarrow ac+ab+bc=-7\)
\(\left(ac+bc+ab\right)^2=49\)
\(a^2c^2+b^2c^2+a^2b^2+2abc^2+2ab^2c+2a^2bc=49\)
\(\Rightarrow a^2c^2+b^2c^2+a^2b^2+2abc\left(a+b+c\right)=49\)
\(\Rightarrow a^2c^2+b^2c^2+a^2b^2=49\)
Có \(a^2+b^2+c^2=14\Rightarrow\left(a^2+b^2+c^2\right)^2=196\)
\(\Rightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+a^2c^2\right)=196\)
\(\Rightarrow a^4+b^4+c^4=196-2.49=196-98=98\)
Ta có:
a) A = 2018 x 2020 = (2019 - 1) x (2019 + 1)
Áp dụng hằng đẳng thức thứ ba ta có:
A = 208 x 2020 = \(2019^2-1^2=2019^2-1\)
Vì \(2019^2-1< 2019^2\)
\(\Rightarrow\)A < B
b) A = \(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^2-1^2\right)\left(2^2+1^2\right)\left(2^4+1^2\right)\left(2^8+1^2\right)\left(2^{16}+1^2\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\)
\(=2^{32}-1\)
Vì \(2^{32}-1< 2^{32}\)
\(\Rightarrow\)A < B
a) Áp dụng hàng đăng thức (a - b) (a + b) = a2 - b2
Ta có : A = 2018.2020 = (2019 - 1) (2019 + 1) = 20192 - 1
Mà B = 20192
Nên A < B
\(x^3-5x^2+8x-4.\)
\(=x^3-4x^2-x^2+4x^2+4x^2-4\)
\(=\left(x^3-4x^2+4x\right)-\left(x^2-4x+4\right)\)
\(=x\left(x^2-4x+4\right)-\left(x^2-4x+4\right)\)
\(=\left(x^2-4x+4\right)\left(x-1\right)\)
\(=\left(x-2\right)^2\left(x-1\right)\)
Cảm ơn bạn nhiều
Bạn có thể giúp mình phần còn lại đc hem ? ^.^
a: \(=a^2+2a\left(b-c\right)+\left(b-c\right)^2+a^2-2a\left(b-c\right)+\left(b-c\right)^2-2\left(b-c\right)^2\)
\(=2a^2+2\left(b-c\right)^2-2\left(b-c\right)^2=2a^2\)
b: \(=a^2+2a\left(b+c\right)+\left(b+c\right)^2+a^2-2a\left(b+c\right)+\left(b+c\right)^2+\left(b-c-a\right)^2+\left(c-a-b\right)^2\)
\(=2a^2+2\left(b+c\right)^2+\left(a-b+c\right)^2+\left(a+b-c\right)^2\)
\(=2a^2+2\left(b+c\right)^2+a^2-2a\left(b-c\right)+\left(b-c\right)^2+a^2+2a\left(b-c\right)+\left(b-c\right)^2\)
\(=2a^2+2\left(b+c\right)^2+2a^2+2\left(b-c\right)^2\)
\(=4a^2+2\left(b^2+2bc+c^2+b^2-2bc+c^2\right)\)
\(=4a^2+4b^2+4c^2\)
a) Ta có : x(x + 4)(x - 4) - (x2 + 1)(x2 - 1)
= x(x2 - 16) - (x4 - 1)
= x3 - 16x - x4 + 1
= x(x2 - 16 - x3) + 1
\(a,x.\left(x+4\right)\left(x-4\right)-\left(x^2+1\right)\left(x^2-1\right)=x\left(x^2-16\right)-x^4+1=x^3-16x=x^4+1\)