Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(9x^2-1=0\\ \Leftrightarrow x^2=\dfrac{1}{9}\\ \Leftrightarrow x=\pm\dfrac{1}{3}\)
a/b = b/c= c/a = a+b+c / a+b+ c = 1
vậy nên a= b=c
bạn áp dụng công thức a/b = b/c = a+b/b+c
Em tham khảo tại link dưới đây nhé.
Câu hỏi của Phạn - Toán lớp 7 - Học toán với OnlineMath
a) Chứng minh tam giác MAB bắng tam giác MDC. Suy ra tam giác ACD vuông.
b) Gọi k là trung điểm AC. Chứng minh KB=KD.
c) KD cắt BC tại I, KB cắt AD tại N. Chứng minh tam giác KNI cân.
Ta có :
\(\frac{a}{b+c}>\frac{a}{a+b+c}\)
\(\frac{b}{c+a}>\frac{b}{a+b+c}\)
\(\frac{c}{a+b}>\frac{c}{a+b+c}\)
\(\Rightarrow\)\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)
\(\Rightarrow\)\(M>1\) \(\left(1\right)\)
Lại có :
\(\frac{a}{b+c}< \frac{a+a}{a+b+c}\)
\(\frac{b}{c+a}< \frac{b+b}{a+b+c}\)
\(\frac{c}{a+b}< \frac{c+c}{a+b+c}\)
\(\Rightarrow\)\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< \frac{a+a}{a+b+c}+\frac{b+b}{a+b+c}+\frac{c+c}{a+b+c}=\frac{a+a+b+b+c+c}{a+b+c}=2\)
\(\Rightarrow\)\(M< 2\) \(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) suy ra \(1< M< 2\)
Vậy \(M\) có giá trị không là số nguyên
Mình nè !
Không được đăng các câu hỏi tinh tình đâu nha!
trả lời:
A=1
hok tốt nhé
tk nhé
A=1 vì số nào mũ 0 đều có kq là 1