Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{\left[\left(25-1\right):1+1\right]\left(25+1\right)}{2}=325.\)
\(B=\frac{\left[\left(51-3\right):2+1\right]\left(51+3\right)}{2}=675\)
\(C=\frac{\left[\left(81-1\right):4+1\right]\left(81+1\right)}{2}=861\)
a) \(\dfrac{-5}{11}+\left(\dfrac{-6}{11}+1\right)\)
\(=\dfrac{-5}{11}+\left(\dfrac{-6}{11}+\dfrac{11}{11}\right)\)
\(=\dfrac{-5}{11}+\dfrac{5}{11}\)
\(=0\)
b) \(\dfrac{2}{3}+\left(\dfrac{5}{7}+\dfrac{-2}{3}\right)\)
\(=\dfrac{2}{3}+\dfrac{-2}{3}+\dfrac{5}{7}\)
\(=0+\dfrac{5}{7}\)
\(=\dfrac{5}{7}\)
c) \(\left(\dfrac{-1}{4}+\dfrac{5}{8}\right)+\dfrac{-3}{8}\)
\(=\dfrac{-1}{4}+\dfrac{-3}{8}+\dfrac{5}{8}\)
\(=\dfrac{-2}{8}+\dfrac{-3}{8}+\dfrac{5}{8}\)
\(=0\)
d) \(\dfrac{3}{4}.\dfrac{7}{25}+\dfrac{3}{4}.\dfrac{18}{25}\)
\(=\dfrac{3}{4}.\left(\dfrac{7}{25}+\dfrac{18}{25}\right)\)
\(=\dfrac{3}{4}.1\)
\(=\dfrac{3}{4}\)
Chúc bạn học tốt
a) \(\dfrac{3}{8}+\dfrac{15}{-25}+\dfrac{3}{5}\)
\(=\dfrac{-9}{40}+\dfrac{3}{5}\)
\(=\dfrac{3}{8}\)
b) \(\dfrac{-5}{18}+\dfrac{23}{45}-\dfrac{9}{10}\)
\(=\dfrac{7}{30}-\dfrac{9}{10}\)
\(=\dfrac{-2}{3}\)
c) \(\dfrac{-5}{12}+\dfrac{15}{18}-2,25\)
\(=\dfrac{5}{12}-2,25\)
\(=\dfrac{-11}{6}\)
d) \(\dfrac{5}{6}+\dfrac{2}{3}-0,5\)
\(=\dfrac{3}{2}-0,5\)
\(=1\)
a) 16 = 2⁴
42 = 2.3.7
ƯCLN(16; 42) = 2
ƯC(16; 42) = Ư(2) = {1; 2}
b) 16 = 2⁴
42 = 2.3.7
86 = 2.43
ƯCLN(16; 42; 86) = 2
ƯC(16; 42; 86) = Ư(2) = {1; 2}
c) 25 = 5²
75 = 3.5²
ƯCLN(25; 75) = 5² = 25
ƯC(25; 75) = Ư(25) = {1; 5; 25}
d) 25 = 5²
55 = 5.11
75 = 3.5²
ƯCLN(25; 55; 75) = 5
ƯC(25; 55; 75) = Ư(5) = {1; 5}
a. 8 . 2x - 5 - 32 = 119
8 . 2x - 5 - 9 = 119
8 . 2x - 5 = 119 + 9
8 . 2x - 5 = 128
2x - 5 = 128 : 8
2x - 5 = 16
2x - 5 = 24 (cùng cơ số)
x - 5 = 4
x = 4 + 5; x = 9
b. 5x + 2x = 62 - 50
7x = 36 - 1
7x = 35
x = 5
https://olm.vn/cau-hoi/a-cho-a12211216211002-ctr-a12-b-cho-p122132142120232-ctr-p-khong-la-so-tu-nhien-c-cho-c132152172120211.8293222842881
Cô làm rồi em nhá
Câu a, xem lại đề bài
Câu b:
P = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{4^2}\) + ...+ \(\dfrac{1}{2023^2}\)
Vì \(\dfrac{1}{2^2}\) < \(\dfrac{1}{1.2}\) = \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\)
\(\dfrac{1}{3^2}\) < \(\dfrac{1}{2.3}\) = \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\)
\(\dfrac{1}{4^2}\) < \(\dfrac{1}{3.4}\) = \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\)
........................
\(\dfrac{1}{2023^2}\) < \(\dfrac{1}{2022.2023}\) = \(\dfrac{1}{2022}\) - \(\dfrac{1}{2023}\)
Cộng vế với vế ta có:
0< P < 1 - \(\dfrac{1}{2023}\) < 1
Vậy 0 < P < 1 nên P không phải là số tự nhiên vì không tồn tại số tự nhiên giữa hai số tự nhiên liên tiếp
Câu c:
C = \(\dfrac{1}{3^2}\) + \(\dfrac{1}{5^2}\) + \(\dfrac{1}{7^2}\) + ....+ \(\dfrac{1}{2021^2}\) + \(\dfrac{1}{2023^2}\) = C
B = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{4^2}\) + \(\dfrac{1}{6^2}\)+.......+ \(\dfrac{1}{2020^2}\) + \(\dfrac{1}{2023^2}\) > 0
Cộng vế với vế ta có:
C+B = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{4^2}\) + \(\dfrac{1}{5^2}\)+ \(\dfrac{1}{6^2}\)+...+ \(\dfrac{1}{2023^2}\) > C + 0 = C > 0
Mặt khác ta có:
1 > \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\)+...+ \(\dfrac{1}{2023^2}\) (cm ở ý b)
Vậy 1 > C > 0 hay C không phải là số tự nhiên (đpcm)