![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
vì a;b;c là độ dài 3 cạnh của 1 tg
\(\Rightarrow\hept{\begin{cases}a+b>c\\a+c>b\\b+c>a\end{cases}\Rightarrow\hept{\begin{cases}ac+bc>c^2\\ab+bc>b^2\\ab+ca>a^2\end{cases}}}\)
\(\Rightarrow ab+bc+ac+ab+bc+ac>a^2+b^2+c^2\)
\(\Rightarrow a^2+b^2+c^2< 2\left(ab+bc+ac\right)\) (1)
có : \(\hept{\begin{cases}\left(a-b\right)^2\ge0\\\left(b-c\right)^2\ge0\\\left(c-a\right)^2\ge0\end{cases}\Rightarrow\hept{\begin{cases}a^2-2ab+b^2\ge0\\b^2-2bc+c^2\ge0\\c^2-2ac+a^2\ge0\end{cases}\Rightarrow}\hept{\begin{cases}a^2+b^2\ge2ab\\b^2+c^2\ge2bc\\c^2+a^2\ge2ac\end{cases}}}\)
\(\Rightarrow2ab+2bc+2ac\le2a^2+2b^2+2c^2\)
\(\Rightarrow ab+bc+ac\le a^2+b^2+c^2\) (2)
\(\left(1\right)\left(2\right)\Rightarrow ab+bc+ac\le a^2+b^2+c^2< 2\left(ab+bc+ac\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(0\le a\le b\le1.\)
\(\Rightarrow\left\{{}\begin{matrix}a-1\le0\\b-1\le0\end{matrix}\right.\)
\(\Rightarrow\left(a-1\right).\left(b-1\right)\ge0\)
\(\Rightarrow ab-a-b+1\ge0.\)
\(\Rightarrow ab+1\ge0+a+b\)
\(\Rightarrow ab+1\ge a+b\)
\(\Rightarrow\frac{1}{ab+1}\le\frac{1}{a+b}.\)
\(\Rightarrow\frac{c}{ab+1}\le\frac{c}{a+b}\left(c\ge0\right).\)
Mà \(\frac{c}{a+b}\le\frac{2c}{a+b+c}\left(c\ge0\right)\)
\(\Rightarrow\frac{c}{ab+1}\le\frac{2c}{a+b+c}\left(1\right).\)
Chứng minh tương tự ta cũng có:
\(\frac{b}{ac+1}\le\frac{2b}{a+b+c}\left(2\right);\frac{a}{bc+1}\le\frac{2a}{a+b+c}\left(3\right).\)
Cộng theo vế \(\left(1\right);\left(2\right)và\left(3\right)\) ta được:
\(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le\frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}\)
\(\Rightarrow\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le\frac{2a+2b+2c}{a+b+c}\)
\(\Rightarrow\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le\frac{2.\left(a+b+c\right)}{a+b+c}\)
\(\Rightarrow\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le2\left(đpcm\right).\)
Chúc bạn học tốt!
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Mk còn thiếu vế trái nữa
a2 + b2 + c2 \(\le\)2 ( ab + bc + ca )
Vì a ; b ; c là 3 cạnh của 1 tam giác nên theo bất đẳng thức tam giác:
Ta có:
a\(\le\)b +c => a . a \(\le\)a.(b + c) => a2 \(\le\) ab + ac ( 1 )
b \(\le\) a + c => b . b \(\le\)b ( a + c ) => b2 \(\le\)ab + bc ( 2)
c \(\le\) a + b => c . c \(\le\) c . ( a + b ) => c2 \(\le\) ac + bc ( 3 )
Cộng với các vế ( 1 ) ; ( 2 ) ; ( 3 ) được:
a2+ b2 + c2 \(\le\) ab + ac + ab + bc + ac + bc
Vậy a2 + b2 + c2 \(\le\)2.( ab + bc + ca )
a2 + b2 + c2 \(\ge\) ab + bc + ca
<=> a2 + b2 + c2 - ab - bc - ca \(\ge\) 0
<=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca \(\ge\)0
<=> ( a2 - 2ab + b2 ) + ( b2 - 2bc + c2 ) + ( c2 - 2ca + a2 ) \(\ge\)0
<=> ( a - b )2 + ( b - c)2 + ( c - a)2 \(\ge\) 0 ( Luôn đúng)
Dấu " = " xảy ra khi a = b = c
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Từ a+b+c=6 \(\Rightarrow\)a+b=6-c
Ta có: ab+bc+ac=9\(\Leftrightarrow\)ab+c(a+b)=9
\(\Leftrightarrow\)ab=9-c(a+b)
Mà a+b=6-c (cmt)
\(\Rightarrow\)ab=9-c(6-c)
\(\Rightarrow\)ab=9-6c+c2
Ta có: (b-a)2\(\ge\)0 \(\forall\)b, c
\(\Rightarrow\)b2+a2-2ab\(\ge\)0
\(\Rightarrow\)(b+a)2-4ab\(\ge\)0
\(\Rightarrow\)(a+b)2\(\ge\)4ab
Mà a+b=6-c (cmt)
ab= 9-6c+c2 (cmt)
\(\Rightarrow\)(6-c)2\(\ge\)4(9-6c+c2)
\(\Rightarrow\)36+c2-12c\(\ge\)36-24c+4c2
\(\Rightarrow\)36+c2-12c-36+24c-4c2\(\ge\)0
\(\Rightarrow\)-3c2+12c\(\ge\)0
\(\Rightarrow\)3c2-12c\(\le\)0
\(\Rightarrow\)3c(c-4)\(\le\)0
\(\Rightarrow\)c(c-4)\(\le\)0
\(\Rightarrow\hept{\begin{cases}c\ge0\\c-4\le0\end{cases}}\)hoặc\(\hept{\begin{cases}c\le0\\c-4\ge0\end{cases}}\)
*\(\hept{\begin{cases}c\ge0\\c-4\le0\end{cases}\Leftrightarrow\hept{\begin{cases}c\ge0\\c\le4\end{cases}\Leftrightarrow}0\le c\le4}\)
*
a^2 + b^2 + ab + bc+ ac < 0
<=> a^2 + b^2 + c^2 +ab + bc+ ac < c^2
<=> 2(a^2 + b^2 + c^2 +ab + bc+ ac) < 2c^2
<=> (a+b+c)^2 + a^2 + b^2 + c^2 < 2 c^2
Mà (a+b+c)^2 >= 0 nên suy ra a^2 + b^2 + c^2 < c^2
suy ra dpcm
nhầm a^2 + b^2 + c^2 < 2c^2 và suy ra dpcm