K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2016

a^2 + b^2 + ab + bc+ ac < 0

<=> a^2 + b^2 + c^2 +ab + bc+ ac < c^2

<=> 2(a^2 + b^2 + c^2 +ab + bc+ ac) < 2c^2

<=> (a+b+c)^2 + a^2 + b^2 + c^2 < 2 c^2

Mà (a+b+c)^2 >= 0 nên suy ra a^2 + b^2 + c^2 < c^2

suy ra dpcm

nhầm a^2 + b^2 + c^2 < 2c^2 và suy ra dpcm

13 tháng 4 2020

vì a;b;c là độ dài 3 cạnh của 1 tg

\(\Rightarrow\hept{\begin{cases}a+b>c\\a+c>b\\b+c>a\end{cases}\Rightarrow\hept{\begin{cases}ac+bc>c^2\\ab+bc>b^2\\ab+ca>a^2\end{cases}}}\)

\(\Rightarrow ab+bc+ac+ab+bc+ac>a^2+b^2+c^2\)

\(\Rightarrow a^2+b^2+c^2< 2\left(ab+bc+ac\right)\)              (1)

có : \(\hept{\begin{cases}\left(a-b\right)^2\ge0\\\left(b-c\right)^2\ge0\\\left(c-a\right)^2\ge0\end{cases}\Rightarrow\hept{\begin{cases}a^2-2ab+b^2\ge0\\b^2-2bc+c^2\ge0\\c^2-2ac+a^2\ge0\end{cases}\Rightarrow}\hept{\begin{cases}a^2+b^2\ge2ab\\b^2+c^2\ge2bc\\c^2+a^2\ge2ac\end{cases}}}\)

\(\Rightarrow2ab+2bc+2ac\le2a^2+2b^2+2c^2\)

\(\Rightarrow ab+bc+ac\le a^2+b^2+c^2\)                     (2)

\(\left(1\right)\left(2\right)\Rightarrow ab+bc+ac\le a^2+b^2+c^2< 2\left(ab+bc+ac\right)\)

13 tháng 1 2020

Ta có: \(0\le a\le b\le1.\)

\(\Rightarrow\left\{{}\begin{matrix}a-1\le0\\b-1\le0\end{matrix}\right.\)

\(\Rightarrow\left(a-1\right).\left(b-1\right)\ge0\)

\(\Rightarrow ab-a-b+1\ge0.\)

\(\Rightarrow ab+1\ge0+a+b\)

\(\Rightarrow ab+1\ge a+b\)

\(\Rightarrow\frac{1}{ab+1}\le\frac{1}{a+b}.\)

\(\Rightarrow\frac{c}{ab+1}\le\frac{c}{a+b}\left(c\ge0\right).\)

\(\frac{c}{a+b}\le\frac{2c}{a+b+c}\left(c\ge0\right)\)

\(\Rightarrow\frac{c}{ab+1}\le\frac{2c}{a+b+c}\left(1\right).\)

Chứng minh tương tự ta cũng có:

\(\frac{b}{ac+1}\le\frac{2b}{a+b+c}\left(2\right);\frac{a}{bc+1}\le\frac{2a}{a+b+c}\left(3\right).\)

Cộng theo vế \(\left(1\right);\left(2\right)và\left(3\right)\) ta được:

\(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le\frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}\)

\(\Rightarrow\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le\frac{2a+2b+2c}{a+b+c}\)

\(\Rightarrow\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le\frac{2.\left(a+b+c\right)}{a+b+c}\)

\(\Rightarrow\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le2\left(đpcm\right).\)

Chúc bạn học tốt!

29 tháng 1 2020

Cảm ơn bạn nha!

Mk còn thiếu vế trái nữa

 a2 + b2 + c\(\le\)2 ( ab + bc + ca ) 

Vì a ; b ; c là 3 cạnh của 1 tam giác nên theo bất đẳng  thức  tam giác:

Ta có: 

a\(\le\)b +c => a . a \(\le\)a.(b + c) => a2 \(\le\) ab + ac    ( 1 ) 

\(\le\) a + c => b . b \(\le\)b ( a + c ) => b\(\le\)ab + bc   ( 2) 

\(\le\) a + b => c . c \(\le\) c . ( a + b ) => c2 \(\le\) ac  + bc   ( 3 ) 

Cộng với các vế ( 1 ) ; ( 2 ) ; ( 3 ) được: 

a2+ b2 + c2 \(\le\) ab + ac + ab + bc + ac + bc 

Vậy a + b+ c\(\le\)2.( ab + bc + ca ) 

a2 + b2 + c \(\ge\)    ab + bc + ca 

 <=> a2 + b2 + c2 - ab - bc  - ca \(\ge\) 0 

<=> 2a+ 2b+ 2c2 - 2ab - 2bc - 2ca \(\ge\)

<=> ( a2 - 2ab + b) + ( b2 - 2bc + c2 ) + ( c2 - 2ca + a\(\ge\)0 

<=> ( a - b )2 + ( b - c)2 + ( c - a)\(\ge\) 0 ( Luôn đúng)

Dấu "  = " xảy ra khi a = b = c 

Từ a+b+c=6 \(\Rightarrow\)a+b=6-c

Ta có: ab+bc+ac=9\(\Leftrightarrow\)ab+c(a+b)=9

                               \(\Leftrightarrow\)ab=9-c(a+b)

           Mà a+b=6-c (cmt)

                                \(\Rightarrow\)ab=9-c(6-c)

                                \(\Rightarrow\)ab=9-6c+c2

Ta có: (b-a)2\(\ge\)\(\forall\)b, c

  \(\Rightarrow\)b2+a2-2ab\(\ge\)0

  \(\Rightarrow\)(b+a)2-4ab\(\ge\)0

  \(\Rightarrow\)(a+b)2\(\ge\)4ab

Mà a+b=6-c (cmt)

         ab= 9-6c+c2 (cmt)

  \(\Rightarrow\)(6-c)2\(\ge\)4(9-6c+c2)

  \(\Rightarrow\)36+c2-12c\(\ge\)36-24c+4c2

  \(\Rightarrow\)36+c2-12c-36+24c-4c2\(\ge\)0

  \(\Rightarrow\)-3c2+12c\(\ge\)0

  \(\Rightarrow\)3c2-12c\(\le\)0

  \(\Rightarrow\)3c(c-4)\(\le\)0

  \(\Rightarrow\)c(c-4)\(\le\)0

\(\Rightarrow\hept{\begin{cases}c\ge0\\c-4\le0\end{cases}}\)hoặc\(\hept{\begin{cases}c\le0\\c-4\ge0\end{cases}}\)

*\(\hept{\begin{cases}c\ge0\\c-4\le0\end{cases}\Leftrightarrow\hept{\begin{cases}c\ge0\\c\le4\end{cases}\Leftrightarrow}0\le c\le4}\)

*