K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2015

A=(1+3+3^2+3^3)+....+(3^96+3^97+3^98+3^99)

A=(1.1+1.3+9.1+27.1)+....+(3^96.1+3^96.3+3^96.9+3^96.27)

A=1.(1+3+9+27)+....+3^96.(1+3+9+27)

A=40.1+.....+3^96.40

A=40.(1+...+3^96)

Vì 40 chia hết cho 40=>40.(1+...+3^96) chia hết cho 40

hay A chia hết cho 40

Nhớ tick cho mik nha

1 tháng 10 2016

A=1+3+32+...+39

A=(1+3)+(32+33)+...+(38+39)

A=1.(1+3)+32.(1+3)+...+38.(1+3)

A=1.4+32.4+...+38.4

A=4.(1+32+...+38) chia hét cho 4 (đpcm)

A=1+3+32+...+39

A=(1+3+32+33)+...+(36+37+38+39)

A=1.(1+3+32+33)+...+36.(1+3+32+33)

A=1.40+...+36.40

A=40.(1+...+36) chia hết cho 40 (đpcm)

28 tháng 10 2020

a) Ta có: \(A=3+3^2+3^3+...+3^{2020}\)

\(\Leftrightarrow\frac{A}{3}=1+3+3^2+...+3^{2019}\)

\(\Leftrightarrow A-\frac{A}{3}=\left(3+3^2+...+3^{2020}\right)-\left(1+3+...+3^{2019}\right)\)

\(\Leftrightarrow\frac{2}{3}A=3^{2020}-1\)

\(\Leftrightarrow A=\frac{3^{2021}-3}{2}\)

b) CM chia hết cho 4:

\(A=3+3^2+3^3+3^4+...+3^{2019}+3^{2020}\)

\(A=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2019}\left(1+3\right)\)

\(A=3\cdot4+3^3\cdot4+...+3^{2019}\cdot4\)

\(A=\left(3+3^3+...+3^{2019}\right)\cdot4\) chia hết cho 4

CM chia hết cho 40:

\(A=3+3^2+3^3+3^4+...+3^{2017}+3^{2018}+3^{2019}+3^{2020}\)

\(A=3\left(1+3+3^2+3^3\right)+...+3^{2017}\left(1+3+3^2+3^3\right)\)

\(A=3\cdot40+...+3^{2017}\cdot40\)

\(A=\left(3+...+3^{2017}\right)\cdot40\) chia hết cho 40

22 tháng 4 2015

giup minh voi sap phai nop roi

18 tháng 1 2018

câu a Achia hết cho 128

18 tháng 8 2023

C/M C\(⋮\)4

\(C=1+3+3^2+...+3^{99}⋮4\)

\(C=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{98}+3^{99}\right)⋮4\)

\(C=\left(1+3\right)+3^2.\left(1+3\right)+...+3^{98}.\left(1+3\right)⋮4\)

\(C=4+3^2.4+...+3^{98}.4⋮4\)

\(C=4.\left(1+3^2+...+3^{98}\right)⋮4\)

C/M C\(⋮\)40

\(C=1+3+3^2+...+3^{99}⋮40\)

\(C=\left(1+3+3^2+3^3\right)+...+\left(3^{96}+3^{97}+3^{98}+3^{99}\right)⋮40\)

\(C=\left(1+3+3^2+3^3\right)+...+3^{96}.\left(1+3+3^2+3^3\right)⋮40\)

\(C=40.1+...+3^{96}.40⋮40\)

\(C=40.\left(1+...+3^{96}\right)⋮40\)

 

 

17 tháng 8 2023

\(A=3+3^2+...+3^{101}+3^{102}\) (thêm 33 bi sót)

\(\Rightarrow A+1=1+3+3^2+...+3^{101}+3^{102}\)

\(\Rightarrow A+1=\dfrac{3^{102+1}-1}{3-1}\)

\(\Rightarrow A+1=\dfrac{3^{103}-1}{2}\)

\(\Rightarrow A=\dfrac{3^{103}-1}{2}-1\)

\(\Rightarrow A=\dfrac{3\left(3^{102}-1\right)}{2}\)

mà \(\left(3^{102}-1\right)\) không chia hết cho 2;4;5

\(\Rightarrow A=\dfrac{3\left(3^{102}-1\right)}{2}\) không chia hết cho 2;4;5

\(\Rightarrow A\) không chia hết cho 40 \(\left(vì40=2.4.5\right)\)

17 tháng 8 2023

\(B=4+4^2+4^3+...+4^{99}\)

\(\Rightarrow B=4\left(1+4^1+4^2\right)+4^4\left(1+4^1+4^2\right)...+4^{97}\left(1+4^1+4^2\right)\)

\(\Rightarrow B=4.21+4^4.21+...+4^{97}.21\)

\(\Rightarrow B=21\left(4+4^4+...+4^{97}\right)⋮21\)

\(\Rightarrow dpcm\)

9 tháng 10 2015

A = 265720 chia hết cho 13 và 40 (đpcm)

23 tháng 9 2015

S = 3100 - 1

24 tháng 8

Ad cho xin ý kiến vs ạ

2 tháng 7 2015

a)B=1+3+32+33+....+399

=(1+3)+(32+33)+...+(398+399)

=4+32.4+....+398.4

=4.(1+32+...+398) chia hết cho 4

Vậy B chia hết cho 4

b)B=1+32+33+34+...+399

=(1+3+32+33)+....+(396+397+398+399)

=40+.........+396.40

=40.(1+....+396) chia hết cho 40

Vậy B chia hết cho 40

2 tháng 7 2015

a)B=(1+3)+(32+33)+...+(398+399)

=(1+3)+32(1+3)+....+398(1+3)

=4+32.4+...+398.4

=4(1+32+...+398) chia hết cho4

câu b bạn vận dụng theo câu a là đc bạn nhóm 4 lại nhé mình hơi lười làm

6 tháng 12 2018

a)Dễ ,bạn chỉ cần nhóm các số hạng thích hợp rồi rút thừa số chung ra là xong.Bạn tự làm

b)\(A=1+3+3^2+...+3^{2017}\)

\(3A=3+3^2+3^3+...+3^{2018}\)

\(3A-A=2A=3^{2018}-1\Rightarrow2A+1=3^{2018}\) (là một lũy thừa)

6 tháng 12 2018

a thế thì bài mình lm đúng òi,tại không bt đúng hay hông nên mình thử hỏi các bạn

Thank bạn nha