K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

B=1+2+2^2+...+2^2021

=>2B=2+2^2+...+2^2022

=>B=2^2022-1

=>A=-1

DD
18 tháng 3 2022

Ta có: \(\frac{2022}{2021^2+k}\le\frac{2022}{2021^2}\) (với \(k\)là số tự nhiên bất kì) 

Ta có: 

\(A=\frac{2022}{2021^2+1}+\frac{2022}{2021^2+2}+...+\frac{2022}{2021^2+2021}\)

\(\le\frac{2022}{2021^2}+\frac{2022}{2021^2}+...+\frac{2022}{2021^2}=\frac{2022}{2021^2}.2021=\frac{2022}{2021}\)

Ta có: \(\frac{2022}{2021^2+k}>\frac{2022}{2021^2+2021}=\frac{2022}{2021.2022}=\frac{1}{2021}\)với \(k\)tự nhiên, \(k< 2021\)

Suy ra \(A=\frac{2022}{2021^2+1}+\frac{2022}{2021^2+2}+...+\frac{2022}{2021^2+2021}\)

\(>\frac{1}{2021}+\frac{1}{2021}+...+\frac{1}{2021}=\frac{2021}{2021}=1\)

Suy ra \(1< A\le\frac{2022}{2021}\)do đó \(A\)không phải là số tự nhiên. 

24 tháng 4 2022

Ta có: 202220212+k≤202220212 (với klà số tự nhiên bất kì) 

Ta có: 

A=202220212+1+202220212+2+...+202220212+2021

≤202220212+202220212+...+202220212=202220212.2021=20222021

Ta có: 202220212+k>202220212+2021=20222021.2022=12021với ktự nhiên, k<2021

Suy ra A=202220212+1+202220212+2+...+202220212+2021

>12021+12021+...+12021=20212021=1

Suy ra 1<A≤20222021do đó Akhông phải là số tự nhiên. 

DD
18 tháng 3 2022

Ta có: \(\frac{2022}{2021^2+k}\le\frac{2022}{2021^2}\) (với \(k\)là số tự nhiên bất kì) 

Ta có: 

\(A=\frac{2022}{2021^2+1}+\frac{2022}{2021^2+2}+...+\frac{2022}{2021^2+2021}\)

\(\le\frac{2022}{2021^2}+\frac{2022}{2021^2}+...+\frac{2022}{2021^2}=\frac{2022}{2021^2}.2021=\frac{2022}{2021}\)

Ta có: \(\frac{2022}{2021^2+k}>\frac{2022}{2021^2+2021}=\frac{2022}{2021.2022}=\frac{1}{2021}\)với \(k\)tự nhiên, \(k< 2021\)

Suy ra \(A=\frac{2022}{2021^2+1}+\frac{2022}{2021^2+2}+...+\frac{2022}{2021^2+2021}\)

\(>\frac{1}{2021}+\frac{1}{2021}+...+\frac{1}{2021}=\frac{2021}{2021}=1\)

Suy ra \(1< A\le\frac{2022}{2021}\)do đó \(A\)không phải là số tự nhiên. 

DD
18 tháng 3 2022

Ta có: \(\frac{2022}{2021^2+k}\le\frac{2022}{2021^2}\) (với \(k\)là số tự nhiên bất kì) 

Ta có: 

\(A=\frac{2022}{2021^2+1}+\frac{2022}{2021^2+2}+...+\frac{2022}{2021^2+2021}\)

\(\le\frac{2022}{2021^2}+\frac{2022}{2021^2}+...+\frac{2022}{2021^2}=\frac{2022}{2021^2}.2021=\frac{2022}{2021}\)

Ta có: \(\frac{2022}{2021^2+k}>\frac{2022}{2021^2+2021}=\frac{2022}{2021.2022}=\frac{1}{2021}\)với \(k\)tự nhiên, \(k< 2021\)

Suy ra \(A=\frac{2022}{2021^2+1}+\frac{2022}{2021^2+2}+...+\frac{2022}{2021^2+2021}\)

\(>\frac{1}{2021}+\frac{1}{2021}+...+\frac{1}{2021}=\frac{2021}{2021}=1\)

Suy ra \(1< A\le\frac{2022}{2021}\)do đó \(A\)không phải là số tự nhiên. 

3 tháng 5 2023

B = \(\dfrac{1}{2002}\) + \(\dfrac{2}{2021}\) + \(\dfrac{3}{2020}\)+...+ \(\dfrac{2021}{2}\) + \(\dfrac{2022}{1}\)

B = \(\dfrac{1}{2002}\) + \(\dfrac{2}{2021}\) + \(\dfrac{3}{2020}\)+...+ \(\dfrac{2021}{2}\) + 2022

B = 1 + ( 1 + \(\dfrac{1}{2022}\)) + ( 1 + \(\dfrac{2}{2021}\)) + \(\left(1+\dfrac{3}{2020}\right)\)+ ... + \(\left(1+\dfrac{2021}{2}\right)\) 

B = \(\dfrac{2023}{2023}\) + \(\dfrac{2023}{2022}\) + \(\dfrac{2023}{2021}\) + \(\dfrac{2023}{2020}\) + ...+ \(\dfrac{2023}{2}\) 

B = 2023 \(\times\) ( \(\dfrac{1}{2023}\) + \(\dfrac{1}{2022}\) + \(\dfrac{1}{2021}\) + \(\dfrac{1}{2020}\)+ ... + \(\dfrac{1}{2}\))

Vậy B > C 

 

6 tháng 2 2023

\(T=\dfrac{1}{2^1}+\dfrac{2}{2^2}+...+\dfrac{2021}{2^{2021}}+\dfrac{2022}{2^{2022}}\)

\(\Leftrightarrow2T=1+\dfrac{1}{2}+\dfrac{3}{2^2}...+\dfrac{2020}{2^{2019}}+\dfrac{2021}{2^{2020}}+\dfrac{2022}{2^{2021}}\)

\(\Leftrightarrow2T-T=\left(1+\dfrac{1}{2}+\dfrac{3}{2^2}...+\dfrac{2020}{2^{2019}}+\dfrac{2021}{2^{2020}}+\dfrac{2022}{2^{2021}}\right)-\left(\dfrac{1}{2^1}+\dfrac{2}{2^2}+...+\dfrac{2021}{2^{2021}}+\dfrac{2022}{2^{2022}}\right)\)

\(\Leftrightarrow T=1+\dfrac{1}{2}+\dfrac{3}{2^2}...+\dfrac{2020}{2^{2019}}+\dfrac{2021}{2^{2020}}+\dfrac{2022}{2^{2021}}-\dfrac{1}{2^1}-\dfrac{2}{2^2}-...-\dfrac{2021}{2^{2021}}-\dfrac{2022}{2^{2022}}\)

\(\Leftrightarrow T=1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2021}}-\dfrac{2022}{2^{2022}}\)

Đặt \(M=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2021}}\)

\(\Leftrightarrow2M=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2020}}\)

\(\Leftrightarrow2M-M=\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2020}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2021}}\right)\)

\(\Leftrightarrow M=1-\dfrac{1}{2^{2021}}\)

Khi đó: \(T=1+M-\dfrac{2022}{2^{2022}}\)

\(\Leftrightarrow T=1+1-\dfrac{1}{2^{2021}}-\dfrac{2022}{2^{2022}}\)

\(\Leftrightarrow T=2-\left(\dfrac{1}{2^{2021}}+\dfrac{2022}{2^{2022}}\right)\)

\(Do\left(\dfrac{1}{2^{2021}}+\dfrac{2022}{2^{2022}}\right)>0\) \(nên\) \(suy\) \(ra\) \(T=2-\left(\dfrac{1}{2^{2021}}+\dfrac{2022}{2^{2022}}\right)< 2\)

Vậy \(T< 2\)           (\(ĐPCM\))