Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(A=\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{13.15}\)
\(A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}\)
\(A=\frac{1}{3}-\frac{1}{15}=\frac{4}{15}\)
\(B=2.\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{9.10}\right)\)
\(B=2.\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(B=2.\left(\frac{1}{1}-\frac{1}{10}\right)=2.\frac{9}{10}\)
\(B=\frac{9}{5}\)
a)\(\frac{4}{3.7}+\frac{4}{7.11}+...+\frac{4}{23.27}=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{23}-\frac{1}{27}=\frac{1}{3}-\frac{1}{27}=\frac{8}{27}\)
b)\(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{6.7}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{6}-\frac{1}{7}=\frac{1}{2}-\frac{1}{7}=\frac{5}{14}\)
c)\(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{11.13}+\frac{2}{1.2}+\frac{2}{2.3}+...+\frac{2}{9.10}=\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{11}-\frac{1}{13}\right)+2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(=\frac{1}{3}-\frac{1}{13}+2\left(1-\frac{1}{10}\right)=\frac{10}{39}+\frac{9}{5}=\frac{401}{195}\)
Bài 2:
a, \(\dfrac{5}{23}\) \(\times\) \(\dfrac{17}{26}\) + \(\dfrac{5}{23}\) \(\times\) \(\dfrac{9}{26}\)
= \(\dfrac{5}{23}\) \(\times\) ( \(\dfrac{17}{26}\) + \(\dfrac{9}{26}\))
= \(\dfrac{5}{23}\) \(\times\) \(\dfrac{26}{26}\)
= \(\dfrac{5}{23}\)
b, \(\dfrac{3}{4}\) \(\times\) \(\dfrac{7}{9}\) + \(\dfrac{7}{4}\) \(\times\) \(\dfrac{3}{9}\)
= \(\dfrac{7}{12}\) + \(\dfrac{7}{12}\)
= \(\dfrac{14}{12}\)
= \(\dfrac{7}{6}\)
a)= ( 81 , 6 x 27 , 3 – 17 , 3 x 81 , 6 ) x 0
=0 ( vì 0 nhân với số nào cũng bằng 0)
b)= ( 13 , 75 – 0 , 48 x 5 ) x ( 42 , 75 : 3 + 2 , 9 ) x ( 9-9)
= ( 13 , 75 – 0 , 48 x 5 ) x ( 42 , 75 : 3 + 2 , 9 ) x 0
= 0 ( vì 0 nhân với số nào cũng bằng 0)
c)=( 792 , 81 x 0 , 25 + 792 , 81 x 0 , 75 ) x 0
=0 ( vì 0 nhân với số nào cũng bằng 0 )
a ) ( 81 , 6 x 27 , 3 – 17 , 3 x 81 , 6 ) x ( 32 x 11 - 3200 x 0 , 1 - 32 )
= ( 81 , 6 x 27 , 3 – 17 , 3 x 81 , 6 ) x ( 352 - 320 - 32 )
= ( 81 , 6 x 27 , 3 – 17 , 3 x 81 , 6 ) x 0
= 0.
b ) ( 13 , 75 – 0 , 48 x 5 ) x ( 42 , 75 : 3 + 2 , 9 ) x ( 1 , 8 x 5 – 0 , 9 x 10 )
= ( 13 , 75 – 0 , 48 x 5 ) x ( 42 , 75 : 3 + 2 , 9 ) x ( 9 - 9 )
= ( 13 , 75 – 0 , 48 x 5 ) x ( 42 , 75 : 3 + 2 , 9 ) x 0
= 0
c ) ( 792 , 81 x 0 , 25 + 792 , 81 x 0 , 75 ) x ( 11 x 9 – 900 x 0 , 1 – 9 )
= ( 792 , 81 x 0 , 25 + 792 , 81 x 0 , 75 ) x ( 99 - 90 - 9 )
= ( 792 , 81 x 0 , 25 + 792 , 81 x 0 , 75 ) x 0
= 0.
Hok tốt !
A = \(\left(6:\frac{3}{5}-1\frac{1}{6}\times\frac{6}{7}\right):\left(4\frac{1}{5}\times\frac{10}{11}+5\frac{2}{11}\right)\)
= \(\left(6\times\frac{5}{3}-\frac{7}{6}\times\frac{6}{7}\right):\left(\frac{21}{5}\times\frac{10}{11}+\frac{57}{11}\right)\)
= \(9:\left(\frac{42}{11}+\frac{57}{11}\right)\)
= 9 : \(\frac{99}{11}\)
= 9 : 9 = 1
^^ Học tốt!!!
(a+\(\dfrac{1}{1.3}\))+(a+\(\dfrac{1}{3.5}\))+(a+\(\dfrac{1}{5.7}\))+..+(a+\(\dfrac{1}{23.25}\))=11.a+(\(\dfrac{1}{3}\)+\(\dfrac{1}{9}\)+\(\dfrac{1}{27}\)+\(\dfrac{1}{81}\)+\(\dfrac{1}{243}\))
(a+a+..+a)+(\(\dfrac{1}{1.3}\)+\(\dfrac{1}{3.5}\)+\(\dfrac{1}{5.7}\)+...+\(\dfrac{1}{23.25}\)) = 11.a+ \(\dfrac{1}{3}\)+\(\dfrac{1}{9}\)+\(\dfrac{1}{27}\)+\(\dfrac{1}{81}\)+\(\dfrac{1}{243}\))
Đặt A =(a+a+..+a) + \(\dfrac{1}{1.3}\)+\(\dfrac{1}{3.5}\)+\(\dfrac{1}{5.7}\)+...+\(\dfrac{1}{23.25}\)
Xét dãy số 1; 3; 5;...;25 Dãy số trên là dãy số cách đều với khoảng cách là: 3-1 = 2
Dãy số trên có số số hạng là: (25 - 1): 2 + 1 = 13
Vậy A = a\(\times\)13 + \(\dfrac{1}{1.3}\)+\(\dfrac{1}{3.5}\)+\(\dfrac{1}{5.7}\)+...+\(\dfrac{1}{23.25}\)
A = a\(\times\)13 + \(\dfrac{1}{2}\) \(\times\)(\(\dfrac{2}{1.3}\)+\(\dfrac{2}{3.5}\)+\(\dfrac{2}{5.7}\)+...+\(\dfrac{2}{23.25}\))
A = a \(\times\) 13 + \(\dfrac{1}{2}\times\)( \(\dfrac{1}{1}-\dfrac{1}{3}\)+\(\dfrac{1}{3}\)-\(\dfrac{1}{5}\)+\(\dfrac{1}{5}\)- \(\dfrac{1}{7}\)+...+\(\dfrac{1}{23}\) - \(\dfrac{1}{25}\))
A = a\(\times\)13 + \(\dfrac{1}{2}\) \(\times\) \(\dfrac{24}{25}\)
A = a\(\times\)13 + \(\dfrac{12}{25}\) (1)
Đặt B = \(\dfrac{1}{3}\) + \(\dfrac{1}{9}\)+ \(\dfrac{1}{27}\)+\(\dfrac{1}{81}\)+\(\dfrac{1}{243}\)
B\(\times\)3 =1 + \(\dfrac{1}{3}\)+\(\dfrac{1}{9}\)+\(\dfrac{1}{27}\)+\(\dfrac{1}{81}\)
B\(\times\)3 - B = 1 - \(\dfrac{1}{243}\) = \(\dfrac{242}{243}\)
2B = \(\dfrac{242}{243}\)
B = \(\dfrac{242}{243}\): 2
B = \(\dfrac{121}{243}\)
11a + B = 11a + \(\dfrac{121}{243}\) (2)
Từ (1) và(2) ta có:
a\(\times\)13 + \(\dfrac{12}{25}\) = 11\(\times\) a + \(\dfrac{121}{143}\)
a \(\times\) 13 + \(\dfrac{12}{25}\) - 11 \(\times\)a = \(\dfrac{121}{143}\)
\(a\times\)(13 - 11) + \(\dfrac{12}{25}\) = \(\dfrac{121}{143}\)
a \(\times\) 2 + \(\dfrac{12}{25}\) = \(\dfrac{121}{243}\)
a \(\times\) 2 = \(\dfrac{121}{243}\) - \(\dfrac{12}{25}\)
a \(\times\) 2 = \(\dfrac{109}{6075}\)
a = \(\dfrac{109}{6075}\): 2
a = \(\dfrac{109}{12150}\)
a; 5\(\dfrac{3}{4}\) : 3 + 2\(\dfrac{1}{4}\).\(\dfrac{1}{3}\) - \(\dfrac{3}{8}\)
= \(\dfrac{23}{4}\) : 3 + \(\dfrac{9}{4}\).\(\dfrac{1}{3}\) - \(\dfrac{3}{8}\)
= \(\dfrac{23}{4}\) x \(\dfrac{1}{3}\) + \(\dfrac{3}{4}\) - \(\dfrac{3}{8}\)
= \(\dfrac{23}{12}\) + \(\dfrac{3}{4}\) - \(\dfrac{3}{8}\)
= \(\dfrac{46}{24}\) + \(\dfrac{18}{24}\) - \(\dfrac{9}{24}\)
= \(\dfrac{64}{24}\) - \(\dfrac{9}{24}\)
= \(\dfrac{55}{24}\)
\(A=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\)
\(3\times A=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)
\(3\times A-A=\left(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\right)-\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\right)\)
\(2\times A=1-\frac{1}{729}=\frac{728}{729}\)
\(A=\frac{364}{729}\)