K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2022

\(A=\left(1+\dfrac{1}{3}\right)\left(1+\dfrac{1}{8}\right)\left(1+\dfrac{1}{15}\right)...\left(1+\dfrac{1}{2400}\right)\)

\(=\dfrac{4}{3}.\dfrac{9}{8}...\dfrac{2401}{2400}\)

\(=\dfrac{2.2}{1.3}.\dfrac{3.3}{2.4}...\dfrac{49.49}{48.50}\)

\(=\dfrac{2.3...49}{2.3...49}.\dfrac{2.3...49}{3.4...50}=1.\dfrac{2.49}{50}=\dfrac{49}{25}\)

 

 

17 tháng 5 2022

\(A=\left(1+\dfrac{1}{3}\right)\cdot\left(1+\dfrac{1}{8}\right)\cdot\left(1+\dfrac{1}{15}\right)\cdot\cdot\cdot\left(1+\dfrac{1}{2400}\right)\)

\(A=\left(\dfrac{3}{3}+\dfrac{1}{3}\right)\cdot\left(\dfrac{8}{8}+\dfrac{1}{8}\right)\cdot\left(\dfrac{15}{15}+\dfrac{1}{15}\right)\cdot\cdot\cdot\left(\dfrac{2400}{2400}+\dfrac{1}{2400}\right)\)

\(A=\dfrac{4}{3}\cdot\dfrac{9}{8}\cdot\dfrac{16}{15}\cdot\cdot\cdot\dfrac{2401}{2400}\)

\(A=\)\(\dfrac{2\cdot2}{1\cdot3}\cdot\dfrac{3\cdot3}{2\cdot4}\cdot\dfrac{4\cdot4}{3\cdot5}\cdot\cdot\cdot\dfrac{49\cdot49}{48\cdot50}\)

\(A=\dfrac{\left(2\cdot3\cdot4\cdot49\right)}{\left(1\cdot2\cdot3\cdot48\right)}\cdot\dfrac{\left(2\cdot3\cdot4\cdot\cdot\cdot49\right)}{\left(3\cdot4\cdot5\cdot\cdot\cdot50\right)}\)

\(A=\dfrac{49\cdot2}{50}=\dfrac{98}{50}=\dfrac{49}{35}\)

 

19 tháng 5 2023

a, \(\dfrac{10}{17}\) + \(\dfrac{5}{-13}\) - \(\dfrac{11}{25}\) + \(\dfrac{7}{17}\) - \(\dfrac{8}{13}\)

= ( \(\dfrac{10}{17}\) + \(\dfrac{7}{17}\)) - ( \(\dfrac{5}{13}\) + \(\dfrac{8}{13}\)) - \(\dfrac{11}{25}\)

\(\dfrac{17}{17}\) - \(\dfrac{13}{13}\) - \(\dfrac{11}{25}\)

= 1 - 1 - \(\dfrac{11}{25}\)

= - \(\dfrac{11}{25}\)

19 tháng 5 2023

b, 0,3 - \(\dfrac{93}{7}\) - 70% - \(\dfrac{4}{7}\)

= 0,3 - 0,7 - ( \(\dfrac{93}{7}+\dfrac{4}{7}\))

= - 0,4 - \(\dfrac{97}{7}\)
= - \(\dfrac{2}{5}\) - \(\dfrac{97}{7}\)

= - \(\dfrac{499}{35}\)

Giải:

A=5/9+2/15-6/9

   =(5/9-6/9)+2/15

   = -1/9 + 2/15

   = 1/45

B=2/7-3/8+4/7+1/7-5/8+5/15

   = (2/7+4/7+1/7) + (-3/8-5/8) +1/3

   = 1+ (-1) +1/3

   =1/3

C=3/5+1/15+1/57+1/3-2/9-3/4-1/36

   =9/15+1/15+1/57+19/57-8/36-27/36-1/36

   =(9/15+1/15)+(1/57+19/57)+(-8/36-27/36-1/36)

   =2/3+20/57+(-1)

   =58/57+(-1)

   =1/57

D=1/1.2+1/2.3+1/3.4+...+1/99.100

   =1/1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100

   =1/1-1/100

   =99/100

Câu E mình ko biết làm nhé!

19 tháng 7 2016

a) \(\frac{15}{16}\cdot\frac{4}{3}-\frac{1}{2}:\frac{5}{4}+3\)

\(=\frac{5}{4}-\frac{2}{5}+3\)

\(=\frac{25}{20}-\frac{8}{20}+\frac{60}{20}\)

\(=\frac{77}{20}=3\frac{17}{20}\)

b) \(\left(\frac{2}{3}-\frac{3}{8}\right):\left(\frac{3}{5}+\frac{1}{4}\right)\)

\(=\frac{7}{24}:\frac{17}{20}\)

\(=\frac{35}{102}\)

c) \(\frac{15}{8}\cdot\left(\frac{1}{3}+\frac{1}{8}\right)-\frac{3}{8}:\frac{3}{4}\)

\(=\frac{15}{8}\cdot\frac{11}{24}-\frac{1}{2}\)

\(=\frac{55}{64}-\frac{1}{2}\)

\(=\frac{23}{64}\)

d) \(\frac{20}{21}:\left(\frac{4}{5}-\frac{1}{10}\right)+\frac{13}{15}:\frac{5}{26}\)

\(=\frac{20}{21}:\frac{7}{10}+\frac{52}{15}\)

\(=\frac{200}{147}+\frac{52}{15}\)

\(=4\frac{608}{735}\)

7 tháng 4 2023

a, \(\dfrac{4}{5}\) + \(\dfrac{9}{15}\) : \(\dfrac{1}{15}\)

\(\dfrac{4}{5}\) + \(\dfrac{9}{15}\) \(\times\) 15

\(\dfrac{4}{5}\)+ 9

\(\dfrac{4}{5}+\dfrac{45}{5}\)

\(\dfrac{49}{5}\) 

b, - \(\dfrac{5}{15}\) \(\times\) ( 1\(\dfrac{1}{2}\) - (-\(\dfrac{2}{7}\)) - (- \(\dfrac{14}{8}\)) - 1\(\dfrac{1}{3}\)

= - \(\dfrac{1}{3}\) \(\times\) ( \(\dfrac{3}{2}\)+\(\dfrac{2}{7}\)\(\dfrac{7}{4}\)) - \(\dfrac{4}{3}\)

= - \(\dfrac{1}{3}\) \(\times\) ( \(\dfrac{42}{28}\)\(\dfrac{8}{28}\)\(\dfrac{49}{28}\)) - \(\dfrac{4}{3}\)

= - \(\dfrac{1}{3}\) \(\times\) \(\dfrac{99}{28}\) - \(\dfrac{4}{3}\)

= - \(\dfrac{99}{84}\) - \(\dfrac{112}{84}\)

= - \(\dfrac{211}{84}\)

A = \(\left(1+\frac{1}{3}\right)\left(1+\frac{1}{8}\right)\left(1+\frac{1}{15}\right)\)\(...\left(1+\frac{1}{2499}\right)\)

A = \(\left(\frac{3}{3}+\frac{1}{3}\right)\left(\frac{8}{8}+\frac{1}{8}\right)\left(\frac{15}{15}+\frac{1}{15}\right)\)\(...\left(\frac{2499}{2499}+\frac{1}{2499}\right)\)

A = \(\frac{4}{3}.\frac{9}{8}.\frac{16}{15}.....\frac{2500}{2499}\)

A = \(\frac{4.9.16.....2500}{3.8.15.....2499}\)

A = \(\frac{\left(2.2\right)\left(3.3\right)\left(4.4\right)...\left(50.50\right)}{3.8.15.24.....2499}\)

A = \(\frac{2.3.4.....50}{3.4.5.6.....51}\)

A = \(\frac{2}{51}\)

Vậy A = \(\frac{2}{51}\)

( Nếu sai mong bạn thông cảm ạ ! )

_HT_

5 tháng 2 2022

Answer:

\(A=\left(1+\frac{1}{3}\right)\left(1+\frac{1}{8}\right)\left(1+\frac{1}{15}\right)...\left(1+\frac{1}{2499}\right)\)

\(=\frac{4}{3}.\frac{9}{8}.\frac{16}{15}...\frac{2500}{2499}\)

\(=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}...\frac{50^2}{49.51}\)

\(=\frac{2^2.3^2.4^2...50^2}{1.3.2.4.3.5...49.51}\)

\(=\frac{2.50}{51}\)

\(=\frac{100}{51}\)

9 tháng 8 2020

A = \(\left(1+\frac{1}{3}\right)\left(1+\frac{1}{8}\right)\left(1+\frac{1}{15}\right)...\left(1+\frac{1}{n.n+n.2}\right)=\frac{4}{3}.\frac{9}{8}.\frac{16}{15}...\frac{n^2+2n+1}{n\left(n+2\right)}\)

\(=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}...\frac{\left(n+1\right)^2}{n\left(n+2\right)}=\frac{2^2.3^2.4^2...\left(n+1\right)^2}{1.3.2.4.3.5...n\left(n+2\right)}=\frac{\left[2.3.4...\left(n+1\right)\right].\left[2.3.4...\left(n+1\right)\right]}{\left(1.2.3...n\right).\left[3.4.5..\left(n+2\right)\right]}\)

\(=\frac{\left(n+1\right).2}{n+2}\)

p/s : giải thích phần n2 + 2n + 1 = (n2 + n) + (n + 1) = n(n + 1) + (n + 1) = (n + 1).(n + 1) = (n + 1)2