K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2020

A = \(\left(1+\frac{1}{3}\right)\left(1+\frac{1}{8}\right)\left(1+\frac{1}{15}\right)...\left(1+\frac{1}{n.n+n.2}\right)=\frac{4}{3}.\frac{9}{8}.\frac{16}{15}...\frac{n^2+2n+1}{n\left(n+2\right)}\)

\(=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}...\frac{\left(n+1\right)^2}{n\left(n+2\right)}=\frac{2^2.3^2.4^2...\left(n+1\right)^2}{1.3.2.4.3.5...n\left(n+2\right)}=\frac{\left[2.3.4...\left(n+1\right)\right].\left[2.3.4...\left(n+1\right)\right]}{\left(1.2.3...n\right).\left[3.4.5..\left(n+2\right)\right]}\)

\(=\frac{\left(n+1\right).2}{n+2}\)

p/s : giải thích phần n2 + 2n + 1 = (n2 + n) + (n + 1) = n(n + 1) + (n + 1) = (n + 1).(n + 1) = (n + 1)2

12 tháng 6 2015

a)\(A=\frac{1}{15}+\frac{1}{35}+...+\frac{1}{195}=\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{13.15}=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}\right)=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{15}\right)=\frac{2}{15}\)

b)\(M=1+3+3^2+...+3^{25}=\frac{3^{26}-1}{3-1}=\frac{3^{26}-1}{2}

13 tháng 6 2015

bạn đọc lại đề bài b) đi

3 tháng 7 2021

Giúp tôi với, nhanh nhé. Cảm ơn!

Mk thấy bài 1 và 2 dễ nên bạn tự làm nha

3

+)Ta có n-2 \(⋮\)n-2

=>2.(n-2)\(⋮\)n-2

=>2n-4\(⋮\)n-2(1)

+)Theo bài ta có:2n+1\(⋮\)n-2(2)

+)Từ (1) và (2)

=>(2n+1)-(2n-4)\(⋮\)n-2

=>2n+1-2n+4\(⋮\)n-2

=>5\(⋮\)n-2

=>n-2\(\in\)Ư(5)={\(\pm\)1;\(\pm\)5}

+)Ta có bảng:

n-2-11-55
n1\(\in\)Z3\(\in\)Z-3\(\in\)Z7\(\in\)Z

Vậy n\(\in\){1;3;-3;7}

Chúc bn học tốt

a. 5.(–8).( –2).(–3)                                                       b. 4.(–5)2 + 2.(–5) – 20

=(-5).8.(-2).(-3)                                                               ={(-5).2} {4+1}-20

=(-5)(-2)(-3).8                                                                 =(-10).5-20=-50-20=-70

=10.(-24)=-240

10 tháng 4 2017

a, \(\left(\dfrac{1}{2}+1\right).\left(\dfrac{1}{3}+1\right).\left(\dfrac{1}{4}+1\right)...\left(\dfrac{1}{999}+1\right)\)

\(=\dfrac{3}{2}.\dfrac{4}{3}.\dfrac{5}{4}...\dfrac{1000}{999}\)

\(=\dfrac{3.4.5...1000}{2.3.4...999}\)

\(=\dfrac{1000}{2}\)\(=500\)

10 tháng 4 2017

b, \(\left(\dfrac{1}{2}-1\right).\left(\dfrac{1}{3}-1\right).\left(\dfrac{1}{4}-1\right)...\left(\dfrac{1}{1000}-1\right)\)

\(=\dfrac{-1}{2}.\dfrac{-2}{3}.\dfrac{-3}{4}...\dfrac{-999}{1000}\)

\(=\dfrac{\left(-1\right).\left(-2\right).\left(-3\right)...\left(-999\right)}{2.3.4...1000}\)

\(=\dfrac{-1}{1000}\)

19 tháng 10 2021
1,Tính các tổng sau. a) 1 + 2+ 3+ 4 +....+ nb) 2+4+6+8+...+2.nc) 1+3+5+7+...+(2.n +1)d) 1+4+7+10+..+2005e) 2+5+8+...+2006f) 1+5+9+..+20012,Tính nhanh : A = 1 +2 + 4 + 8 +16 + ...+ 8192 3,a, Tính tổng các số lẻ có 2 chữ số.b,Tính tổng các số chẵn có 2 chữ số.4,a,Tổng 1 +2+3+....+n có bao nhiêu số hạng để kết quả tổng bằng 190b,Có hay không số tự nhiên n sao cho 1+2+3+...+n =2004c,Chứng minh rằng: [(1+2+3+...+n)-7]không chia hết cho 10
13 tháng 2 2018

A = \(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2007}}+\frac{1}{3^{2008}}\)

3A= \(1+\frac{1}{3}+...+\frac{1}{3^{2006}}+\frac{1}{3^{2007}}\)

3A-A= \(1-\frac{1}{3^{2008}}\)

13 tháng 2 2018

B = \(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{n-1}}+\frac{1}{3^n}\)

3B = \(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{n-2}}+\frac{1}{3^{n-1}}\)

3B - B = \(1-\frac{1}{3^n}\)