Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(A=\frac{1}{15}+\frac{1}{35}+...+\frac{1}{195}=\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{13.15}=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}\right)=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{15}\right)=\frac{2}{15}\)
b)\(M=1+3+3^2+...+3^{25}=\frac{3^{26}-1}{3-1}=\frac{3^{26}-1}{2}
Mk thấy bài 1 và 2 dễ nên bạn tự làm nha
3
+)Ta có n-2 \(⋮\)n-2
=>2.(n-2)\(⋮\)n-2
=>2n-4\(⋮\)n-2(1)
+)Theo bài ta có:2n+1\(⋮\)n-2(2)
+)Từ (1) và (2)
=>(2n+1)-(2n-4)\(⋮\)n-2
=>2n+1-2n+4\(⋮\)n-2
=>5\(⋮\)n-2
=>n-2\(\in\)Ư(5)={\(\pm\)1;\(\pm\)5}
+)Ta có bảng:
n-2 | -1 | 1 | -5 | 5 |
n | 1\(\in\)Z | 3\(\in\)Z | -3\(\in\)Z | 7\(\in\)Z |
Vậy n\(\in\){1;3;-3;7}
Chúc bn học tốt
a. 5.(–8).( –2).(–3) b. 4.(–5)2 + 2.(–5) – 20
=(-5).8.(-2).(-3) ={(-5).2} {4+1}-20
=(-5)(-2)(-3).8 =(-10).5-20=-50-20=-70
=10.(-24)=-240
a, \(\left(\dfrac{1}{2}+1\right).\left(\dfrac{1}{3}+1\right).\left(\dfrac{1}{4}+1\right)...\left(\dfrac{1}{999}+1\right)\)
\(=\dfrac{3}{2}.\dfrac{4}{3}.\dfrac{5}{4}...\dfrac{1000}{999}\)
\(=\dfrac{3.4.5...1000}{2.3.4...999}\)
\(=\dfrac{1000}{2}\)\(=500\)
b, \(\left(\dfrac{1}{2}-1\right).\left(\dfrac{1}{3}-1\right).\left(\dfrac{1}{4}-1\right)...\left(\dfrac{1}{1000}-1\right)\)
\(=\dfrac{-1}{2}.\dfrac{-2}{3}.\dfrac{-3}{4}...\dfrac{-999}{1000}\)
\(=\dfrac{\left(-1\right).\left(-2\right).\left(-3\right)...\left(-999\right)}{2.3.4...1000}\)
\(=\dfrac{-1}{1000}\)
A = \(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2007}}+\frac{1}{3^{2008}}\)
3A= \(1+\frac{1}{3}+...+\frac{1}{3^{2006}}+\frac{1}{3^{2007}}\)
3A-A= \(1-\frac{1}{3^{2008}}\)
A = \(\left(1+\frac{1}{3}\right)\left(1+\frac{1}{8}\right)\left(1+\frac{1}{15}\right)...\left(1+\frac{1}{n.n+n.2}\right)=\frac{4}{3}.\frac{9}{8}.\frac{16}{15}...\frac{n^2+2n+1}{n\left(n+2\right)}\)
\(=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}...\frac{\left(n+1\right)^2}{n\left(n+2\right)}=\frac{2^2.3^2.4^2...\left(n+1\right)^2}{1.3.2.4.3.5...n\left(n+2\right)}=\frac{\left[2.3.4...\left(n+1\right)\right].\left[2.3.4...\left(n+1\right)\right]}{\left(1.2.3...n\right).\left[3.4.5..\left(n+2\right)\right]}\)
\(=\frac{\left(n+1\right).2}{n+2}\)
p/s : giải thích phần n2 + 2n + 1 = (n2 + n) + (n + 1) = n(n + 1) + (n + 1) = (n + 1).(n + 1) = (n + 1)2