\(x^2-9x+18\)

b) \(x^2-6x+8\)

c)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) \(x^2-9x+18=x^2-3x-6x+18=x.\left(x-3\right)-6.\left(x-3\right)=\left(x-6\right).\left(x-3\right)\)

b) \(x^2-6x+8=x^2-2x-4x+8=x.\left(x-2\right)-4.\left(x-2\right)=\left(x-4\right).\left(x-2\right)\)

c) \(x^2-5x-14=x^2+2x-7x-14=x.\left(x+2\right)-7.\left(x+2\right)=\left(x-7\right).\left(x+2\right)\)

Chúc bạn học tốt !

16 tháng 8 2019

a) x2 − 9x + 18

= x2 - 6x - 3x + 18

= x(x - 6) - 3(x - 6)

= (x - 6)(x - 3)

b) x2 − 6x + 8

= x2 - 4x - 2x + 8

= x(x - 4) - 2(x - 4)

= (x - 4)(x - 2)

c) x2 − 5x − 14

= x2 − 7x + 2x − 14

= x(x - 7) + 2(x - 7)

= (x - 7)(x + 2)

Chúc bạn học tốt!!!

27 tháng 8 2017

\(a,\)\(x^4-4x^3+4x^2=0\)

\(\Leftrightarrow x^2.\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow x^2.\left(x^2-2.x.2+2^2\right)=0\)

\(\Leftrightarrow x^2.\left(x-2\right)^2=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=0\\\left(x-2\right)^2=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

\(b,\)\(x^2+5x+4=0\)

\(\Leftrightarrow x^2+x+4x+4=0\)

\(\Leftrightarrow x.\left(x+1\right)+4.\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right).\left(x+4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+4=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-4\end{cases}}\)

\(c,\)\(9x-6x^2-3=0\)

\(\Leftrightarrow-3.\left(2x^2-3x+1\right)=0\)

\(\Leftrightarrow2x^2-3x+1=0\)

\(\Leftrightarrow2x^2-2x-x+1=0\)

\(\Leftrightarrow2x.\left(x-1\right)-\left(x-1\right)\)

\(\Leftrightarrow\left(x-1\right).\left(2x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\2x-1=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=1\\2x=1\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{1}{2}\end{cases}}\)

\(d,\)\(2x^2+5x+2=0\)

\(\Leftrightarrow2x^2+4x+x+2=0\)

\(\Leftrightarrow2x.\left(x+2\right)+\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right).\left(2x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\2x+1=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=-2\\2x=-1\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-\frac{1}{2}\end{cases}}\)

10 tháng 10 2018

a) \(x^2-6x+8\)

\(=x^2-2\cdot x\cdot3+3^2-1\)

\(=\left(x-3\right)^2-1^2\)

\(=\left(x-3-1\right)\left(x-3+1\right)\)

\(=\left(x-4\right)\left(x-2\right)\)

Còn lại tương tự

a) \(x^2-6x+8=x^2-2x-4x+8\)                     

\(=\left(x^2-2x\right)-\left(4x-8\right)\)

=x(x-2)-4(x-2) = (x-2)(x-4)

a: \(\Leftrightarrow4\left(-5x+6\right)\left(3x-7\right)=30x-240-6x-84\)

\(\Leftrightarrow4\left(-15x^2+35x+18x-42\right)=24x-324\)

\(\Leftrightarrow-60x^2+212x-168-24x+324=0\)

\(\Leftrightarrow-60x^2+188x+156=0\)

\(\Leftrightarrow15x^2-47x-39=0\)

\(\text{Δ​}=\left(-47\right)^2-4\cdot15\cdot\left(-39\right)=4549>0\)

Do đó: Phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{47-\sqrt{4549}}{30}\\x_2=\dfrac{47+\sqrt{4549}}{30}\end{matrix}\right.\)

b: \(\Leftrightarrow6x^2+27x+4x+18-6x^2-x-12x-2=x+1-x+6\)

\(\Leftrightarrow17x+16=7\)

hay x=-9/17

c: \(\Leftrightarrow4x^2+8x+4+4x^2-4x+1-8x^2+8=11\)

=>4x+13=11

hay x=-1/2

16 tháng 8 2020

Lần sau đăng 3 - 4 ý/câu hỏi thôi :V 

1/ -x2 + 4x - 5 = -( x2 - 4x + 4 ) - 1 = -( x - 2 )2 - 1 

\(-\left(x-2\right)^2\le0\forall x\Rightarrow-\left(x-2\right)^2-1\le-1\)

Đẳng thức xảy ra <=> x - 2 = 0 => x = 2

=> GTLN = -1 <=> x = 2

2/ -x2 + 2x - 7 = -( x2 - 2x + 1 ) - 6 = -( x - 1 )2 - 6 

\(-\left(x-1\right)^2\le0\forall x\Rightarrow-\left(x-1\right)^2-6\le-6\)

Đẳng thức xảy ra <=> x - 1 = 0 => x = 1

=> GTLN = -6 <=> x = 1

3/ -x2 - 6x - 10 = -( x2 + 6x + 9 ) - 1 = -( x + 3 )2 - 1

\(-\left(x+3\right)^2\le0\forall x\Rightarrow-\left(x+3\right)^2-1\le-1\)

Đẳng thức xảy ra <=> x + 3 = 0 => x = -3

=> GTLN = -1 <=> x = -3

4/ -x2 + 2x - 2 = -( x2 - 2x + 1 ) - 1 = -( x - 1 )2 - 1

\(-\left(x-1\right)^2\le0\forall x\Rightarrow-\left(x-1\right)^2-1\le-1\)

Đẳng thức xảy ra <=> x - 1 = 0 => x = 1

=> GTLN = -1 <=> x = 1

5/ -9x2 + 24x - 18 = -9( x2 - 8/3x + 16/9 ) - 2 = -9( x - 4/3 )2 - 2

\(-9\left(x-\frac{4}{3}\right)^2\le0\forall x\Rightarrow-9\left(x-\frac{4}{3}\right)^2-2\le-2\)

Đẳng thức xảy ra <=> x - 4/3 = 0 => x = 4/3

=> GTLN = -2 <=> x = 4/3

6/ -4x2 + 4x - 7 = -4( x2 - x + 1/4 ) - 6 = -4( x - 1/2 )2 - 6

\(-4\left(x-\frac{1}{2}\right)^2\le0\forall x\Rightarrow-4\left(x-\frac{1}{2}\right)^2-6\le-6\)

Đẳng thức xảy ra <=> x - 1/2 = 0 => x = 1/2

=> GTLN = -6 <=> x = 1/2

7/ -16x2 + 8x - 2 = -16( x2 - 1/2x + 1/16 ) - 1 = -16( x - 1/4 )2 - 1

\(-16\left(x-\frac{1}{4}\right)^2\le0\forall x\Rightarrow-16\left(x-\frac{1}{4}\right)^2-1\le-1\)

Đẳng thức xảy ra <=> x - 1/4 = 0 => x = 1/4

=> GTLN = -1 <=> x = 1/4

16 tháng 8 2020

8/ -5x2 + 20x - 49 = -5( x2 - 4x + 4 ) - 29 = -5( x - 2 )2 - 29

\(-5\left(x-2\right)^2\le0\forall x\Rightarrow-5\left(x-2\right)^2-29\le-29\)

Đẳng thức xảy ra <=> x - 2 = 0 => x = 2

=> GTLN = -29 <=> x = 2

9/ -x2 + x - 1 = -( x2 - x + 1/4 ) - 3/4 = -( x - 1/2 )2 - 3/4

\(-\left(x-\frac{1}{2}\right)^2\le0\forall x\Rightarrow-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\le-\frac{3}{4}\)

Đẳng thức xảy ra <=> x - 1/2 = 0 => x = 1/2

=> GTLN = -3/4 <=> x = 1/2

10/ -x2 + 3x - 3 = -( x2 - 3x + 9/4 ) - 3/4 = -( x - 3/2 )2 - 3/4

\(-\left(x-\frac{3}{2}\right)^2\le0\forall x\Rightarrow-\left(x-\frac{3}{2}\right)^2-\frac{3}{4}\le-\frac{3}{4}\)

Đẳng thức xảy ra <=> x - 3/2 = 0 => x = 3/2

=> GTLN = -3/4 <=> x = 3/2

11/ -x2 + 5x - 8 = -( x2 - 5x + 25/4 ) - 7/4 = -( x - 5/2 )2 - 7/4

\(-\left(x-\frac{5}{2}\right)^2\le0\forall x\Rightarrow-\left(x-\frac{5}{2}\right)^2-\frac{7}{4}\le-\frac{7}{4}\)

Đẳng thức xảy ra <=> x - 5/2 = 0 => x = 5/2

=> GTLN = -7/4 <=> x = 5/2

12/ -9x2 + 12x - 5 = -9( x2 - 4/3x + 4/9 ) - 1 = -9( x - 2/3 )2 - 1

\(-9\left(x-\frac{2}{3}\right)^2\le0\forall x\Rightarrow-9\left(x-\frac{2}{3}\right)^2-1\le-1\)

Đẳng thức xảy ra <=> x - 2/3 = 0 => x = 2/3

=> GTLN = -1 <=> x = 2/3

13/ -x2 - 8x - 19 = -( x2 + 8x + 16 ) - 3 = -( x + 4 )2 - 3

\(-\left(x+4\right)^2\le0\forall x\Rightarrow-\left(x+4\right)^2-3\le-3\)

Đẳng thức xảy ra <=> x + 4 = 0 => x = -4

=> GTLN = -3 <=> x = -4

14/ -x2 + 2/3x - 1 = -( x2 - 2/3x + 1/9 ) - 8/9 = -( x - 1/3 )2 - 8/9

\(-\left(x-\frac{1}{3}\right)^2\le0\forall x\Rightarrow-\left(x-\frac{1}{3}\right)^2-\frac{8}{9}\le-\frac{8}{9}\)

Đẳng thức xảy ra <=> x - 1/3 = 0 => x = 1/3

=> GTLN = -8/9 <=> x = 1/3

Mệt :)

3 tháng 2 2019

a) \(3xy\left(x-2y\right)-2x\left(x-xy\right)^2\)

\(=3x^2y-6xy^2-2x\left(x^2-2x^2y+\left(xy\right)^2\right)\)

\(=3x^2y-6xy^2-2x^3+2x^3y-2x^3y^2\)

b) \(68^2+64.68+32^2=\left(68+32\right)^2=100^2=10000\)

c) \(\left(x^3-6x^2+9x+14\right):\left(x-7\right)\)

\(=\left(x^2\left(x-7\right)-x\left(x-7\right)+2\left(x+7\right)\right):\left(x-7\right)\)

=?

a: \(=3x^2y-6xy^2-2x\left(x^2y^2-2x^2y+x^2\right)\)

\(=3x^2y-6xy^2-2x^3y^2+4x^3y-2x^3\)

b: \(=\left(68+32\right)^2=100^2=10000\)

c: \(=\dfrac{x^3-7x^2+x^2-7x+16x-112+126}{x-7}\)

\(=x^2+x+16+\dfrac{126}{x-7}\)

d: \(=15x^5-12x^4+18x^2-\dfrac{5}{4}x^4+x^3-1.5x\)

\(=15x^5-\dfrac{53}{4}x^4+x^3+18x^2-1.5x\)

e: \(=2a^2b^2+2a^2by+4axb^2+4ab^2y\)

 

22 tháng 10 2018

a,        (x-2)(3x-2)

b,        (x+5)(x+6)

c,        (x+1)(x+4)

d          (x-5y)(x-2y)

e,         (x-6)(x-3)

f,          (x-2)(x-1)

g          (x-2)(3x+1)

h          (2x-3)(x+2)

i           

21 tháng 10 2019

\(a,x^2-5x-xy+5y\)

\(=x\cdot\left(x-y\right)-5\cdot\left(x-y\right)\)

\(=\left(x-y\right)\cdot\left(x-5\right)\)

\(b,x^3+6x^2+9x\)

\(=x\cdot\left(x^2+6x+9\right)\)

\(=x\cdot\left(x+3\right)^2\)

\(c,x^2+x-2\)

\(=x^2-x+2x-2\)

\(=x\cdot\left(x-1\right)+2\cdot\left(x-1\right)\)

\(=\left(x-1\right)\cdot\left(x+2\right)\)

\(d,4x^2-\left(x^2+1\right)\)

\(=\left(2x-x^2-1\right)\cdot\left(2x+x^2+1\right)\)

\(=\left(2x-x^2-1\right)\cdot\left(x+1\right)^2\)

17 tháng 3 2019

Đặt

6x+7 = 7 , ta có

\(\left(t+1\right)\left(t-1\right)t^2=72\Rightarrow\left(t^2-1\right)t^2=72\)

\(\Rightarrow t^4-t^2-72=0\)

Lại đặt \(t^2=a\) (a \(\ge0\) )

\(\Rightarrow a^2-a-72=0\Rightarrow\left(a+8\right)\left(a-9\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a=-8\left(ktm\right)\\a=9\left(tm\right)\end{matrix}\right.\)

a = 9 => \(\left[{}\begin{matrix}t=3\\t=-3\end{matrix}\right.\)

Với t = 3

=> 6x + 7 =3

=> 6x = -4

=> x= \(-\frac{2}{3}\)

Với t = -3

=> 6x + 7 = -3

=> 6x = -10

=> x = \(-\frac{5}{3}\)

Vậy.....

b)

\(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+42}=\frac{1}{18}\)

\(\Rightarrow\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)

\(\Rightarrow\frac{1}{x-4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}=\frac{1}{18}\)

\(\Rightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\Rightarrow\frac{x+7-x-4}{\left(x+4\right)\left(x+7\right)}=\frac{1}{18}\)

\(\Rightarrow\frac{3}{\left(x+7\right)\left(x+4\right)}=\frac{1}{18}\Rightarrow x^2+11x+28-54=0\Rightarrow x^2+11x-26=0\)

\(\Rightarrow\left(x-2\right)\left(x+13\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-13\end{matrix}\right.\)

17 tháng 3 2019

a) Ta có:

(6x+8)(6x+6)(6x+7)2 = 72

Đặt \(6x+7=a\)

\(\Rightarrow\left(a+1\right)\left(a-1\right)a^2=72\)

\(\Leftrightarrow a^4-a^2-72=0\)

\(\Leftrightarrow\left(a^4+8a^2\right)+\left(-9a^2-72\right)=0\)

\(\Leftrightarrow\left(a^2+8\right)\left(a^2-9\right)=0\)

Đễ thấy \(a^2+8>0\)

\(\Rightarrow a^2-9=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=3\\a=-3\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}6x+7=3\\6x+7=-3\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-2}{3}\\x=\frac{-5}{3}\end{cases}}\)

b)

Violympic toán 8