Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,A=2^0+2^1+2^2+....+\)\(2^{2010}\)
\(\Rightarrow2A=2^1+2^2+2^3+....+2^{2011}\)
\(2A-A=\left(2^1+2^2+2^3+...+2^{2011}\right)-\left(2^0+2^1+2^2+...+2^{2010}\right)\)
\(A=2^{2011}-2^0\)
\(A=2^{2011}-1\)
\(b,B=1+3+3^2+...+3^{100}\)
\(\Rightarrow3B=3+3^2+3^3+...+3^{101}\)
\(3B-B=\left(3+3^2+3^3+...+3^{101}\right)-\left(1+3+3^2+...+3^{100}\right)\)
\(2B=3^{101}-1\)
\(\Rightarrow B=\frac{3^{101}-1}{2}\)
\(c,C=4+4^2+4^3+...+4^n\)
\(\Rightarrow4C=4^2+4^3+4^4+...+4^{n+1}\)
\(4C-C=\left(4^2+4^3+4^4+...+4^{n+1}\right)-\left(4+4^2+4^3+...+4^n\right)\)
\(3C=4^{n+1}-4\)
\(\Rightarrow C=\frac{4^{n+1}-4}{3}\)
\(d,D=1+5+5^2+...+5^{2000}\)
\(\Rightarrow5D=5+5^2+5^3+...+5^{2001}\)
\(5D-D=\left(5+5^2+5^3+...+5^{2001}\right)-\left(1+5+5^2+...+5^{2000}\right)\)
\(4D=5^{2001}-1\)
\(\Rightarrow D=\frac{5^{2001}-1}{4}\)
b)
B=1+3+3^2+3^3+..+3^100
=> 3B = 3 + 3^2 + 3^3 + ...+ 3^101
=> 3B - B = ( 3 + 3^2 + 3^3 + ...+ 3^101) - (1+3+3^2+3^3+..+3^100)
=> 2B = 3^101 - 1
=> B =( 3^101 - 1) / 2
#)Giải :
\(A=\frac{1}{2}-\frac{2}{3}+\frac{3}{4}-\frac{4}{5}+\frac{5}{6}-\frac{6}{7}-\frac{5}{6}+\frac{4}{5}-\frac{3}{4}+\frac{2}{3}-\frac{1}{2}\)
\(A=\left(\frac{1}{2}-\frac{1}{2}\right)+\left(-\frac{2}{3}+\frac{2}{3}\right)+\left(\frac{3}{4}-\frac{3}{4}\right)+\left(-\frac{4}{5}+\frac{4}{5}\right)+\left(\frac{5}{6}-\frac{5}{6}\right)-\frac{6}{7}\)
\(A=0+0+0+0+0-\frac{6}{7}\)
\(A=-\frac{6}{7}\)
Kho..................wa.....................troi.....................thi......................lanh.................ret.......................ai........................tich..........................ung.....................ho........................minh.....................cho....................do....................lanh
a)
\(5A=5+5^2+.....+5^{101}\)
\(\Rightarrow5A-A=\left(5+5^2+.....+5^{101}\right)-\left(1+5+.....+5^{100}\right)\)
\(\Rightarrow4A=5^{101}-1\)
\(\Rightarrow A=\frac{5^{101}-1}{4}\)
b)
\(2B=1+\left(\frac{1}{2}\right)^2+....+\left(\frac{1}{2}\right)^{100}\)
\(\Rightarrow2B-B=\left(1+\frac{1}{2^2}+.....+\frac{1}{2^{100}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+......+\frac{1}{2^{99}}\right)\)
\(\Rightarrow B=1-\frac{1}{2^{100}}\)
1)
a. \(\left(3x^2-50\right)^2=5^4\)
\(\Leftrightarrow3x^4-50=625\)
\(\Leftrightarrow3x^4=675\)
\(\Leftrightarrow x^4=225\)
\(\Leftrightarrow x=\sqrt{15}\)
2)
a. \(\frac{\left(3^4-3^3\right)^4}{27^3}=\frac{3^{16}-3^{12}}{\left(3^3\right)^3}=\frac{3^{12}.3^4-3^{12}}{3^9}=\frac{3^{12}\left(3^4-1\right)}{3^9}\)
\(=\frac{3^{12}.80}{3^9}=3^3.80=27.80=2160\)
b. \(\frac{25^3}{\left(5^5-5^3\right)^2}=\frac{\left(5^2\right)^3}{5^{10}-5^6}=\frac{5^6}{5^6.5^4-5^6}=\frac{5^6}{5^6\left(5^4-1\right)}\)
\(=\frac{5^6}{5^6.624}=\frac{1}{624}\)
\(\left(-\dfrac{1}{2}\right)^5=-\left(\dfrac{1}{2}\right)^5=-\dfrac{1}{32}\)
\(\left(-\dfrac{2}{3}\right)^4=\left(\dfrac{2}{3}\right)^4=\dfrac{2^3}{3^4}=\dfrac{8}{81}\)