Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`(x+1) + (x+2) + ... + (x+100) = 5750`
Số số ngoặc trong phép tính là:
`(100 - 1) : 1 + 1 = 100` (ngoặc)
`=> 100x + (1+2+3+...+100) = 5750`
`=> 100x + ((100 + 1) . 100 : 2) = 5750`
`=> 100x + 5050 = 5750`
`=> 100x = 200`
`=> x = 2`
`(x+1) . (2y-5) = 143`
`=> (2y-5) ∈ Ư(143)`
mà `2y-5 lẻ`
`=> 2y-5 ∈ {-1;-11;1;11} => y = {2;-3;3;8}`
mà `y ∈ N => y = {2;3;8}`
`=> x+1 ∈ {-143;143;13}`
`=> x ∈ {-144;142;12}`
mà `x ∈ N => x ∈ {142;12}`
Vậy `(x;y) = (142;3);(12;8)`
(Chúc bạn học tốt)
a ) (x+1)2=16
=>x+1=4 (vì x là số tự nhiên nên x+1=-4 là ko thỏa mãn)
=>x=3
b)x=2 ( cậu quy đồng rồi tự giải , có gì ko hiểu thì hỏi riêng mình )
bài 6 ta có số chia 10 thì thương là 7
số chia là 7 thì thương là 10
số chia là 2 thì thương là 35
số chia là 35 thì thương là 2
số chia là 5 thì thương là 14
số chia là 14 thì thương là 5
Mình chỉ làm được bài một thôi:
BÀI 1: Giải
Gọi ƯCLN(a;b)=d (d thuộc N*)
=> a chia hết cho d ; b chia hết cho d
=> a=dx ; b=dy (x;y thuộc N , ƯCLN(x,y)=1)
Ta có : BCNN(a;b) . ƯCLN(a;b)=a.b
=> BCNN(a;b) . d=dx.dy
=> BCNN(a;b)=\(\frac{dx.dy}{d}\)
=> BCNN(a;b)=dxy
mà BCNN(a;b) + ƯCLN(a;b)=15
=> dxy + d=15
=> d(xy+1)=15=1.15=15.1=3.5=5.3(vì x; y ; d là số tự nhiên)
TH 1: d=1;xy+1=15
=> xy=14 mà ƯCLN(a;b)=1
Ta có bảng sau:
x | 1 | 14 | 2 | 7 |
y | 14 | 1 | 7 | 2 |
a | 1 | 14 | 2 | 7 |
b | 14 | 1 | 7 | 2 |
TH2: d=15; xy+1=1
=> xy=0(vô lý vì ƯCLN(x;y)=1)
TH3: d=3;xy+1=5
=>xy=4
mà ƯCLN(x;y)=1
TA có bảng sau:
x | 1 | 4 |
y | 4 | 1 |
a | 3 | 12 |
b | 12 | 3 |
TH4:d=5;xy+1=3
=> xy = 2
Ta có bảng sau:
x | 1 | 2 |
y | 2 | 1 |
a | 5 | 10 |
b | 10 | 5 |
.Vậy (a;b) thuộc {(1;14);(14;1);(2;7);(7;2);(3;12);(12;3);(5;10);(10;5)}
Câu 1:
\(A=\frac{\left(1+2+3+...+100\right)x\left(101x102-101x101-51-50\right)}{2+4+6+8+...+2048}\)
\(A=\frac{\left(1+2+3+...+100\right)x\left(101x\left(102-101\right)-\left(50+51\right)\right)}{2+4+6+8+...+2048}\)
\(A=\frac{\left(1+2+3+...+100\right)x\left(101-101\right)}{2+4+6+8+...+2048}\)
\(A=\frac{\left(1+2+3+...+100\right)x0}{2+4+6+8+...+2048}\)
\(A=0\)
Ta có:Số số hạng từ 2 đến 101 là:
(101-2):1+1=100(số hạng)
Do đó từ 2 đến 101 có số cặp là:
100:2=50(cặp)
\(B=\frac{101+100+99+...+3+2+1}{101-100+99-98+3-2+1}\)
\(B=\frac{5151}{51}\)
\(B=101\)
Câu 2:
a)697:\(\frac{15x+364}{x}\)=17
\(\frac{15x+364}{x}\)=697:17
\(\frac{15x+364}{x}\)=41
15x+364=41x
41x-15x=364
26x=364
x=14
Vậy x=14
b)92.4-27=\(\frac{x+350}{x}+315\)
\(\frac{x+350}{x}+315\)=341
\(\frac{x+350}{x}\)=26
x+350=26
x=26-350
x=-324
Vậy x=-324
c, 720 : [ 41 - ( 2x -5)] = 40
[ 41 - ( 2x -5)] =720:40
[ 41 - ( 2x -5)] =18
2x-5=41-18
2x-5=23
2x=28
x=14
Vậy x=14
d, Số số hạng từ 1 đến 100 là:
(100-1):1+1=100(số hạng)
Tổng dãy số là:
(100+1)x100:2=5050
Mà cứ 1 số hạng lại có 1x suy ra có 100x
Ta có:(x+1) + (x+2) +...+ (x+100) = 5750
(x+x+...+x)+(1+2+...+100)=5750
100x+5050=5750
100x=700
x=7
Vậy x=7
\(a,12⋮x-1\)
\(x-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm12\right\}\)
Ta lập bảng xét giá trị
x - 1 1 -1 2 -2 3 -3 4 -4 12 -12
x 2 0 3 -1 4 -2 5 -3 13 -11
\(c,x+15⋮x+3\)
\(x+3+12⋮x+3\)
\(12⋮x+3\)
Tự lập bảng , lười ~~~
\(d,\left(x+1\right)\left(y-1\right)=3\)
Ta lập bảng
x+1 | 1 | -1 | 3 | -3 |
y-1 | 3 | -3 | 1 | -1 |
x | 2 | 0 | 2 | -4 |
y | 4 | -2 | 2 | 0 |
i, Theo bài ra ta có : ( olm thiếu dấu và == nên trình bày kiủ nài )
\(x⋮10,x⋮12,x⋮15\)và \(100< x< 150\)
Gợi ý : Phân tích thừa số nguyên tố r xét ''BC'' ( chắc là BC )
:>> Hc tốt
a, (x+1)+(x+2)+(x+3)+...+(x+100) = 7450
(x+x+...+x)+(1+2+...+100) = 7450
100 x + 101 . 100 2 = 7450
100x = 2400
x = 24
b, 1+2+3+...+x = 500500
Đặt: A = 1+2+3+...+x
số hạng A (x - 1) : 1 + 1 = x
Tổng của A
A = x + 1 . x 2 = 500500
(x+1).x = 1001000
Ta thấy
1000.1001 = 1001000
=> x = 1000
a) \(\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+...+\left(x+100\right)=5750\)
\(\Rightarrow\left(x+x+x+...+x\right)+\left(1+2+3+..+100\right)=5750\Rightarrow x.100+\left(100+1\right)\cdot100:2=5750\)\
\(\Rightarrow x.100+5050=5750\Rightarrow x.100=700\Rightarrow x=7\)
b) \(\frac{x+1}{2}=\frac{8}{x+1}\Rightarrow\left(x+1\right)\left(x+1\right)=2.8\)
\(\Rightarrow\left(x+1\right)^2=16\Rightarrow\left(x+1\right)^2=4^2\)
\(\Leftrightarrow x+1=4\Rightarrow x=3\)
1.\(\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+...+\left(x+100\right)=5750\)
\(\Leftrightarrow\left(x+x+x+...+x\right)+\left(1+2+3+...+100\right)=5750\)
\(\Leftrightarrow100x+5050=5750\)
\(\Leftrightarrow100x=5750-5050=700\)
\(\Leftrightarrow x=700:100=7\)
2. \(\frac{x+1}{2}=\frac{8}{x+1}\)
\(\Leftrightarrow\left(x+1\right).\left(x+1\right)=8.2\)
\(\Leftrightarrow\left(x+1\right).\left(x+1\right)=16\)
\(\Leftrightarrow\left(x+1\right)^2=16\)
\(\Leftrightarrow\left(x+1\right)=16:2\)
\(\Leftrightarrow\left(x+1\right)=8\)
\(\Leftrightarrow x=8-1=7\)