Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
\(A=\frac{\left(1+2+3+...+100\right)x\left(101x102-101x101-51-50\right)}{2+4+6+8+...+2048}\)
\(A=\frac{\left(1+2+3+...+100\right)x\left(101x\left(102-101\right)-\left(50+51\right)\right)}{2+4+6+8+...+2048}\)
\(A=\frac{\left(1+2+3+...+100\right)x\left(101-101\right)}{2+4+6+8+...+2048}\)
\(A=\frac{\left(1+2+3+...+100\right)x0}{2+4+6+8+...+2048}\)
\(A=0\)
Ta có:Số số hạng từ 2 đến 101 là:
(101-2):1+1=100(số hạng)
Do đó từ 2 đến 101 có số cặp là:
100:2=50(cặp)
\(B=\frac{101+100+99+...+3+2+1}{101-100+99-98+3-2+1}\)
\(B=\frac{5151}{51}\)
\(B=101\)
Câu 2:
a)697:\(\frac{15x+364}{x}\)=17
\(\frac{15x+364}{x}\)=697:17
\(\frac{15x+364}{x}\)=41
15x+364=41x
41x-15x=364
26x=364
x=14
Vậy x=14
b)92.4-27=\(\frac{x+350}{x}+315\)
\(\frac{x+350}{x}+315\)=341
\(\frac{x+350}{x}\)=26
x+350=26
x=26-350
x=-324
Vậy x=-324
c, 720 : [ 41 - ( 2x -5)] = 40
[ 41 - ( 2x -5)] =720:40
[ 41 - ( 2x -5)] =18
2x-5=41-18
2x-5=23
2x=28
x=14
Vậy x=14
d, Số số hạng từ 1 đến 100 là:
(100-1):1+1=100(số hạng)
Tổng dãy số là:
(100+1)x100:2=5050
Mà cứ 1 số hạng lại có 1x suy ra có 100x
Ta có:(x+1) + (x+2) +...+ (x+100) = 5750
(x+x+...+x)+(1+2+...+100)=5750
100x+5050=5750
100x=700
x=7
Vậy x=7
697:(15x+364):x=17
=> 15+360:x = 697:17=41
=> 360:x=41-15=26
=> x=360:26=180/13
92.4-27=(x+350):x+315
=> 1+350:x+315=341
=> 350:x = 341 -316=25
-> x=350:25=14
720:(41-(2x-51)=23.5
=> 41-(2x-51)= 720 :40=18
=> 2x=41-18+51=74
=> x=74:2=37
(x+1)+(x+2)+(x+3)+...+(x+100)=5750
=>(x+x+...+x) +(1+2+3+..+99+100)=5750
=> 100.x +(100+1).100:2= 5750
=>100.x= 5750-5050=700
=> x=700:100=7
( L-i-k-e )
697 : (15x + 364) : x = 17
=> 15 + 360 : x = 697 : 17 = 41
=> 360 : x = 41 - 15 = 26
=> x = 360 : 26 = 180/13
92.4 - 27 = (x + 350) : x + 315
=> 1 + 350 : x + 315 = 341
=> 350 : x = 341 - 316 = 25
-> x = 350: 25 = 14
720 : (41 - (2 x - 51) = 23.5
=> 41 - (2 x -51) = 720 : 40 = 18
=> 2x = 41 - 18 + 51 = 74
=> x = 74 : 2 = 37
(x + 1) + (x + 2) + (x + 3) +...+ (x + 100) = 5750
=>(x + x +...+ x) +(1 + 2 + 3 +...+ 99 + 100) = 5750
=> 100.x + (100 + 1).100 : 2 = 5750
=>100.x = 5750 - 5050 = 700
=> x = 700 : 100 = 7
1990.1990-1992.1998
=1990.1990-(1990+2).1998
=1990.1990-1990.1998+2.1998
=1990.(1990-1998)+2.1998
=1990.(-8)+2.1998
=1990.(-8)+2.(1990+8)
=1990.(-8)+2.1990+16
=1990.{(-8)+2}+16
=1990.(-6)+2.8
=(-1990).3.2+2.8
=-5970.2+2.8
=2.{(-5970)+8}
=2.-5962
=−11924
Bài 1:
a.1990.1990-1992.1988
Gọi 1990 là a ta có:
1992=a+2
1988=a-2
\(\Rightarrow A=a^2-\left(a+2\right)\left(a-2\right)\)
\(\Rightarrow A=a^2-a^2-2a+2a-4\)
\(\Rightarrow A=-4\)
Bài 3:
a,Đặt A = \(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\)
A = \(\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+\frac{1}{2^5}-\frac{1}{2^6}\)
2A = \(1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^5}\)
2A + A = \(\left(1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^5}\right)+\left(\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+\frac{1}{2^5}-\frac{1}{2^6}\right)\)
3A = \(1-\frac{1}{2^6}\)
=> 3A < 1
=> A < \(\frac{1}{3}\)(đpcm)
b, Đặt A = \(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)
3A = \(1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{4^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)
3A + A = \(\left(1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{4^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\right)-\left(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\right)\)
4A = \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
=> 4A < \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\) (1)
Đặt B = \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\)
3B = \(3-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{97}}-\frac{1}{3^{98}}\)
3B + B = \(\left(3-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{97}}-\frac{1}{3^{98}}\right)+\left(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\right)\)
4B = \(3-\frac{1}{3^{99}}\)
=> 4B < 3
=> B < \(\frac{3}{4}\) (2)
Từ (1) và (2) suy ra 4A < B < \(\frac{3}{4}\)=> A < \(\frac{3}{16}\)(đpcm)