K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2017

Ta có : \(\frac{2008}{\sqrt{2009}}+\frac{2009}{\sqrt{2008}}=\frac{2009-1}{\sqrt{2009}}+\frac{2008+1}{\sqrt{2008}}=\sqrt{2009}+\sqrt{2008}+\left(\frac{1}{\sqrt{2008}}-\frac{1}{\sqrt{2009}}\right)\)

Vì \(\frac{1}{\sqrt{2008}}>\frac{1}{\sqrt{2009}}\) nên \(\frac{1}{\sqrt{2008}}-\frac{1}{\sqrt{2009}}>0\)

\(\Rightarrow\sqrt{2009}+\sqrt{2008}+\left(\frac{1}{\sqrt{2008}}-\frac{1}{\sqrt{2009}}\right)>\sqrt{2009}+\sqrt{2008}\)

Hay \(\frac{2008}{\sqrt{2009}}+\frac{2009}{\sqrt{2008}}>\sqrt{2008}+\sqrt{2009}\)

21 tháng 7 2017

Cảm ơn bạn CTV 

26 tháng 2 2020

Ta có :

\(\frac{2008}{\sqrt{2009}}+\frac{2009}{\sqrt{2008}}=\frac{2009}{\sqrt{2009}}-\frac{1}{\sqrt{2009}}+\frac{2008}{\sqrt{2008}}+\frac{1}{\sqrt{2008}}\)

\(=\sqrt{2008}+\sqrt{2009}+\frac{1}{\sqrt{2008}}-\frac{1}{\sqrt{2009}}\)

\(\sqrt{2008}< \sqrt{2009}\Rightarrow\frac{1}{\sqrt{2008}}>\frac{1}{\sqrt{2009}}\Leftrightarrow\frac{1}{\sqrt{2008}}-\frac{1}{\sqrt{2009}}\)

\(\Leftrightarrow\sqrt{2008}+\sqrt{2009}+\frac{1}{\sqrt{2008}}-\frac{1}{\sqrt{2009}}>\sqrt{2008}+\sqrt{2009}\)

⇒ đpcm

5 tháng 2 2020

Ta có : \(\frac{2008}{\sqrt{2009}}+\frac{2009}{\sqrt{2008}}\) = \(\frac{2009-1}{\sqrt{2009}}+\frac{2008+1}{\sqrt{2008}}\)

= \(\frac{2009}{\sqrt{2009}}-\frac{1}{\sqrt{2009}}+\frac{2008}{\sqrt{2008}}+\frac{1}{\sqrt{2008}}\)

= \(\frac{\left(\sqrt{2009}\right)^2}{\sqrt{2009}}-\frac{1}{\sqrt{2009}}+\frac{\left(\sqrt{2008}\right)^2}{\sqrt{2008}}+\frac{1}{\sqrt{2008}}\)

= \(\sqrt{2009}-\frac{1}{\sqrt{2009}}+\sqrt{2008}+\frac{1}{\sqrt{2008}}\)

\(\frac{1}{\sqrt{2008}}>\frac{1}{\sqrt{2009}}\)

=> \(\frac{1}{\sqrt{2008}}-\frac{1}{\sqrt{2009}}>0\)

=> \(\frac{1}{\sqrt{2008}}-\frac{1}{\sqrt{2009}}+\sqrt{2008}+\sqrt{2009}>\sqrt{2008}+\sqrt{2009}\)

Vậy \(\frac{1}{\sqrt{2008}}-\frac{1}{\sqrt{2009}}+\sqrt{2008}+\sqrt{2009}>\sqrt{2008}+\sqrt{2009}\) .

9 tháng 4 2018

so sánh nha mn

6 tháng 11 2016

a)\(\sqrt{9.4}=\sqrt{36}=6;\sqrt{9}.\sqrt{4}=3.2=6\Rightarrow\sqrt{9.4}=\sqrt{9}.\sqrt{4}\)

b)\(\sqrt{169-144}=\sqrt{25}=5;\sqrt{169}-\sqrt{144}=13-12=1\Rightarrow\sqrt{169-144}>\sqrt{169}-\sqrt{144}\)

6 tháng 11 2016

tra loi ho mik lun di mai ik hoc roi !chut chut chuit chut

20 tháng 8 2017

a= \(\sqrt{50+2}\)=\(\sqrt{52}\)=\(2\sqrt{13}\)=\(\sqrt{2}\cdot\sqrt{2}\cdot\sqrt{13}\)=\(\sqrt{2}\cdot\sqrt{26}\)

b= \(\sqrt{50}+\sqrt{2}\)=\(5\sqrt{2}+\sqrt{2}\)=\(6\sqrt{2}\)=\(\sqrt{36}\cdot\sqrt{2}\)( 6 = \(\sqrt{36}\))

 Vì \(\sqrt{26}< \sqrt{36}\)và \(\sqrt{2}>0\)nên \(\sqrt{2}\cdot\sqrt{26}< \sqrt{2}\cdot\sqrt{36}\)hay \(\sqrt{50+2}< \sqrt{50}+\sqrt{2}\)

                                                                              Vậy a<b

Lưu ý : Chỗ nào không hiểu thì cứ hỏi mình

               Đừng quên cho nếu đúng

13 tháng 3 2017

Ta có :

\(4+\sqrt{33}>4+\sqrt{25}=4+5=9\)

\(\sqrt{29}+\sqrt{14}< \sqrt{25}+\sqrt{9}=5+3=8\)

Vì \(9>8\) nên \(4+\sqrt{33}>\sqrt{29}+\sqrt{14}\)

Vậy \(4+\sqrt{33}>\sqrt{29}+\sqrt{14}\)

13 tháng 3 2017

Sorry nhầm !!!! làm tại

\(\sqrt{29}+\sqrt{14}< \sqrt{33}+\sqrt{16}=\sqrt{33}+4\)

Vậy \(\sqrt{33}+4>\sqrt{29}+\sqrt{14}\)