K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2020

Ta có :

\(\frac{2008}{\sqrt{2009}}+\frac{2009}{\sqrt{2008}}=\frac{2009}{\sqrt{2009}}-\frac{1}{\sqrt{2009}}+\frac{2008}{\sqrt{2008}}+\frac{1}{\sqrt{2008}}\)

\(=\sqrt{2008}+\sqrt{2009}+\frac{1}{\sqrt{2008}}-\frac{1}{\sqrt{2009}}\)

\(\sqrt{2008}< \sqrt{2009}\Rightarrow\frac{1}{\sqrt{2008}}>\frac{1}{\sqrt{2009}}\Leftrightarrow\frac{1}{\sqrt{2008}}-\frac{1}{\sqrt{2009}}\)

\(\Leftrightarrow\sqrt{2008}+\sqrt{2009}+\frac{1}{\sqrt{2008}}-\frac{1}{\sqrt{2009}}>\sqrt{2008}+\sqrt{2009}\)

⇒ đpcm

20 tháng 7 2017

Ta có : \(\frac{2008}{\sqrt{2009}}+\frac{2009}{\sqrt{2008}}=\frac{2009-1}{\sqrt{2009}}+\frac{2008+1}{\sqrt{2008}}=\sqrt{2009}+\sqrt{2008}+\left(\frac{1}{\sqrt{2008}}-\frac{1}{\sqrt{2009}}\right)\)

Vì \(\frac{1}{\sqrt{2008}}>\frac{1}{\sqrt{2009}}\) nên \(\frac{1}{\sqrt{2008}}-\frac{1}{\sqrt{2009}}>0\)

\(\Rightarrow\sqrt{2009}+\sqrt{2008}+\left(\frac{1}{\sqrt{2008}}-\frac{1}{\sqrt{2009}}\right)>\sqrt{2009}+\sqrt{2008}\)

Hay \(\frac{2008}{\sqrt{2009}}+\frac{2009}{\sqrt{2008}}>\sqrt{2008}+\sqrt{2009}\)

21 tháng 7 2017

Cảm ơn bạn CTV 

5 tháng 2 2020

Ta có : \(\frac{2008}{\sqrt{2009}}+\frac{2009}{\sqrt{2008}}\) = \(\frac{2009-1}{\sqrt{2009}}+\frac{2008+1}{\sqrt{2008}}\)

= \(\frac{2009}{\sqrt{2009}}-\frac{1}{\sqrt{2009}}+\frac{2008}{\sqrt{2008}}+\frac{1}{\sqrt{2008}}\)

= \(\frac{\left(\sqrt{2009}\right)^2}{\sqrt{2009}}-\frac{1}{\sqrt{2009}}+\frac{\left(\sqrt{2008}\right)^2}{\sqrt{2008}}+\frac{1}{\sqrt{2008}}\)

= \(\sqrt{2009}-\frac{1}{\sqrt{2009}}+\sqrt{2008}+\frac{1}{\sqrt{2008}}\)

\(\frac{1}{\sqrt{2008}}>\frac{1}{\sqrt{2009}}\)

=> \(\frac{1}{\sqrt{2008}}-\frac{1}{\sqrt{2009}}>0\)

=> \(\frac{1}{\sqrt{2008}}-\frac{1}{\sqrt{2009}}+\sqrt{2008}+\sqrt{2009}>\sqrt{2008}+\sqrt{2009}\)

Vậy \(\frac{1}{\sqrt{2008}}-\frac{1}{\sqrt{2009}}+\sqrt{2008}+\sqrt{2009}>\sqrt{2008}+\sqrt{2009}\) .

9 tháng 4 2018

so sánh nha mn

26 tháng 7 2017

ta có: \(A=\frac{2006}{2007}+\frac{2007}{2008}+\frac{2008}{2009}+\frac{2009}{2006}\)

A = \(1-\frac{1}{2007}+1-\frac{1}{2008}+1-\frac{1}{2009}+1+\frac{3}{2006}\)

A= \(4\)\(+\frac{3}{2006}-\left(\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}\right)\)

Do 1/2007 < 1/2006 ; 1/2008<1/2006 ; 1/2009<1/2006=> 1/2007 + 1/2008 + 1/2009 < 1/2006 + 1/2006 + 1/2006

Mà 1/2006 + 1/2006 + 1/2006 = 3/2006

=> 3/2006  -( 1/2007 + 1/2008 + 1/2009) > 0 

=> \(4+\frac{3}{2006}-\left(\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}\right)>4\)

=> A > 4

26 tháng 7 2017

Ta có:\(\frac{2006}{2007}< 1\)

           \(\frac{2007}{2008}< 1\)

           \(\frac{2008}{2009}< 1\)

            \(\frac{2009}{2006}>1\)\(\frac{2006}{2007}+\frac{2007}{2008}+\frac{2008}{2009}+\frac{2009}{2006}< 4\)

18 tháng 3 2016

tôi thích hoa hồng sai kìa

18 tháng 3 2016

Vì 2006/2007 ; 2007/2008 ; 2008/2009 ; 2009/2010 đều bé hơn 1 nên:

2006/2007 + 2007/2008 + 2008/2009 + 2009/2010 < 1 + 1 + 1 + 1 = 4.

Vậy ...