K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2020

Ta có : \(\frac{2008}{\sqrt{2009}}+\frac{2009}{\sqrt{2008}}\) = \(\frac{2009-1}{\sqrt{2009}}+\frac{2008+1}{\sqrt{2008}}\)

= \(\frac{2009}{\sqrt{2009}}-\frac{1}{\sqrt{2009}}+\frac{2008}{\sqrt{2008}}+\frac{1}{\sqrt{2008}}\)

= \(\frac{\left(\sqrt{2009}\right)^2}{\sqrt{2009}}-\frac{1}{\sqrt{2009}}+\frac{\left(\sqrt{2008}\right)^2}{\sqrt{2008}}+\frac{1}{\sqrt{2008}}\)

= \(\sqrt{2009}-\frac{1}{\sqrt{2009}}+\sqrt{2008}+\frac{1}{\sqrt{2008}}\)

\(\frac{1}{\sqrt{2008}}>\frac{1}{\sqrt{2009}}\)

=> \(\frac{1}{\sqrt{2008}}-\frac{1}{\sqrt{2009}}>0\)

=> \(\frac{1}{\sqrt{2008}}-\frac{1}{\sqrt{2009}}+\sqrt{2008}+\sqrt{2009}>\sqrt{2008}+\sqrt{2009}\)

Vậy \(\frac{1}{\sqrt{2008}}-\frac{1}{\sqrt{2009}}+\sqrt{2008}+\sqrt{2009}>\sqrt{2008}+\sqrt{2009}\) .