\(\left(\frac{1}{2^2}-1\right)\).\(\left(\frac{1}{3^2}-1\right)\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2016

Ta có \(-A=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)...\left(1-\frac{1}{2014^2}\right)\)

\(=\left(\frac{2^2-1}{2^2}\right)\left(\frac{3^2-1}{3^2}\right)...\left(\frac{2014^2-1}{2014^2}\right)\)

\(=\frac{\left(2-1\right)\left(2+1\right)}{2^2}.\frac{\left(3-1\right)\left(3+1\right)}{3^2}...\frac{\left(2014-1\right)\left(2014+1\right)}{2014^2}\)

\(=\frac{1.3}{2.2}.\frac{2.4}{3.3}...\frac{2013.2015}{2014.2014}\)

\(=\frac{1.2...2013}{2.3...2014}.\frac{3.4...2015}{2.3...2014}\)

\(=\frac{1}{2014}.\frac{2015}{2}\)

\(=\frac{2015}{2014.2}>\frac{1}{2}\)hay -A>1/2

=>\(A< \frac{-1}{2}\)hay A<B

\(E=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}.....\frac{100}{99}\) 

\(E=\frac{3.4.5...100}{2.3.4...99}\)

\(E=\frac{100}{2}\)

\(E=50\)

k cho mk nha

        k cho mk nha

28 tháng 1 2018

1,

Ta có: \(x^2\ge0;\left|y-13\right|\ge0\)

\(\Rightarrow x^2+\left|y-13\right|\ge0\)

\(\Rightarrow x^2+\left|y-13\right|+14\ge14\)

\(\Rightarrow\frac{1}{x^2+\left|y-13\right|+14}\le\frac{1}{14}\)

\(\Rightarrow P=\frac{12}{x^2+\left|y-13\right|+14}\le\frac{12}{14}=\frac{6}{7}\)

Dấu "=" xảy ra khi x = 0, y = 13

Vậy Pmin = 6/7 khi x = 0, y = 13

2, \(P=\frac{n+2}{n-5}=\frac{n-5+7}{n-5}=1+\frac{7}{n-5}\)

Để P có GTLN thì\(\frac{7}{n-5}\) có GTLN => n - 5 có GTNN và n - 5 > 0 => n = 6

28 tháng 1 2018

3,

Ta có: \(10\le n\le99\)

\(\Rightarrow20\le2n\le198\)

\(\Rightarrow2n\in\left\{36;64;100;144;196\right\}\)

\(\Rightarrow n\in\left\{18;32;50;72;98\right\}\)

\(\Rightarrow n+4\in\left\{22;36;50;72;98\right\}\)

Ta thấy chỉ có 36 là số chính phương 

Vậy n = 32

4,

ÁP dụng TCDTSBN ta có:

\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{a+c-b}{b}=\frac{a+b-c+b+c-a+a+c-b}{c+a+b}=\frac{a+b+c}{a+b+c}=1\) (vì a+b+c khác 0)

\(\Rightarrow\hept{\begin{cases}\frac{a+b-c}{c}=1\\\frac{b+c-a}{a}=1\\\frac{a+c-b}{b}=1\end{cases}\Rightarrow\hept{\begin{cases}a+b-c=c\\b+c-a=a\\a+c-b=b\end{cases}\Rightarrow}\hept{\begin{cases}a+b=2c\\b+c=2a\\a+c=2b\end{cases}}}\)

\(\Rightarrow B=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\frac{a+b}{a}\cdot\frac{a+c}{c}\cdot\frac{b+c}{b}=\frac{2c}{a}\cdot\frac{2b}{c}\cdot\frac{2a}{b}=\frac{8abc}{abc}=8\)

Vậy B = 8 

30 tháng 8 2016

\(\frac{10^{2016}+2^3}{9}=\frac{10^{2016}-1}{9}+\frac{2^3+1}{9}=\left(1+10+10^2+...+10^{2015}\right)+1\in N.\)

30 tháng 8 2016

\(10^{2016}\)= 1000...00(mình ko cần biết cso bao nhiêu cx 0, nó là bài đánh  lừa nhá bn)

\(2^3\)= 8

\(10^{2016}\) + 8= 10000...08

có 1+0+0+...+0+8=9. vậy số này chia hết cho 9

mà như bạn thấy số này là số dương nên số đó là số tự nhiên nhá

26 tháng 6 2018

Bài 1 và Bài 2 dễ, bn có thể tự làm được!

Bài 3:

a) ta có: 1020 = (102)10 = 10010

=> 10010>910

=> 1020>910

b) ta có: (-5)30 = 530 =( 53)10 = 12510 ( vì là lũy thừa bậc chẵn)

(-3)50 = 350 = (35)10= 24310

=> 12510 < 24310

=> (-5)30 < (-3)50

c) ta có: 648 = (26)8= 248

1612 = ( 24)12 = 248

=> 648 = 1612

d) ta có: \(\left(\frac{1}{16}\right)^{10}=\left(\frac{1}{2^4}\right)^{10}=\frac{1}{2^{40}}\)

\(\left(\frac{1}{2}\right)^{50}=\frac{1}{2^{50}}\)

\(\Rightarrow\frac{1}{2^{40}}>\frac{1}{2^{50}}\)

\(\Rightarrow\left(\frac{1}{16}\right)^{10}>\left(\frac{1}{2}\right)^{50}\)

26 tháng 6 2018

3.a) Ta có: 910=(32)10=320

Mà 1020<320

Nên 1020<910

c)Ta có:648 =(82)8=816

1612=(23)12=836

vì 816<836

Nên 648<162